UnifiedPOS

L]
Association for Retall Technology Standards
wha 2 Hstionel Retail Fadermion

UnifiedPOS
UnifiedPOS
Retail Peripheral Architecture
Version 1.11 January 15, 2007

International Standard

For Implementation of Point Of Service Peripherals

UnifiedPOS Retail Peripheral Architecture

Copyright © National Retail Federation, 2004-2007. All Rights Reserved.

Right to Copy

This document may be copied or used for purposes consistent with adoption of the ARTS
Standards. However, any changes or inconsistent uses must be pre-approved in writing by
the National Retail Federation (“NRF”). Consequently, this document may be furnished to
others, but derivative works (the term “derivative works” does not include functional
additions that do not modify or change the base standard as written) that comment on or
otherwise explain it or assist in its implementation may not cite or refer to the standard, in
whole or in part, without such permission. Moreover, this document may not be modified
in any way, such as by removing the copyright notice or references to the NRF, ARTS, or
its committees, except as needed for the purpose of developing ARTS standards using
procedures approved by NRF, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the
National Retail Federation or its successors or assigns.

Disclaimer

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED
ON AN “AS IS” BASIS AND THE ASSOCIATION FOR RETAIL TECHNOLOGY
STANDARDS (“ARTS”) AND THE NATIONAL RETAIL FEDERATION (“NRF”)
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

ARTS AND NRF ASSUME NO RESPONSIBILITY FOR ERRORS OR OMISSIONS IN
THIS PUBLICATION OR OTHER DOCUMENTS WHICH ARE REFERENCED BY,
CITED BY, OR LINKED TO THIS PUBLICATION. THIS PUBLICATION COULD
INCLUDE TECHNICAL OR OTHER INACCURACIES OR TYPOGRAPHICAL
ERRORS. ARTS AND NRF RESERVE THE RIGHT TO MAKE IMPROVEMENTS
AND/OR CHANGES TO THE INFORMATION HEREIN.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture iii

UnifiedPOS Technical Committee Members:

BearingPoint, Inc.,

Fujitsu Transaction Solutions Inc.,
IBM Corporation,

Microsoft Corporation,

NCR Corporation,

OPOS-Japan,

PSC Inc.,

Seiko Epson Corporation,

Sun Microsystems, Inc.,

Symbol Technologies, Inc.,
Wincor Nixdorf International GmbH.

UnifiedPOS Technical Committee Contributors:

360Commerce,

The Home Depot, Inc.,

PCMS Datafit Ltd.,

InstaPayment, Inc.,

J.C. Penney Company, Inc.,

Retail Solutions Providers Association (RSPA),
Sears, Roebuck & Co.,

Star Micronics, Inc.,

Transaction Printer Group, Inc.,

Ultimate Technology Corporation

Information regarding the activities of the UnifiedPOS Committee can
be viewed at the following web site:

http://www.nrf-arts.org

UnifiedPOS
UnifiedPOS Retail Peripheral Architecture

Information in this document is subject to change without notice.

JavaPOS is a trademark of Sun Microsystems, Inc.
Windows is a trademark of Microsoft Corporation.
Epson is a trademark of Seiko Epson Corporation.

UnifiedPOS Version 1.11 -- Released January 15, 2007

http://www.nrf-arts.org
http://www.nrf-arts.org

UnifiedPOS Retail Peripheral Architecture

This page intentionally left blank.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents

INTRODUCTION AND ARCHITECTURE
UNIFIEDPOS ARCHITECTURE FOR RETAIL

WHAT IS UNIFIEDPOS?

DEPENDENCIEScceiuvtieeeeiitteeeeeeieiteeeeeeeeieeeeeeeestaeseeseesisareeesenisseesseesaresesensssneeeens
UNIFIEDPOS RELATIONSHIP TO OPOS AND JAVAPOS ...,
WHO SHOULD READ THIS DOCUMENTvvviiiiiiiirieeieeiireeeeeeiereeeeeeeareeeeeeeaneeee s

ARCHITECTURAL OVERVIEW

ARCHITECTURAL COMPONENTScccviiiiuiieeiiieeereeeesareeessreesssresesssessseeessssesssssens
USE OF UML ..ottt ettt sttt et
Package Diagram................c.ccoccooeveeioiioiioiiiiiioieee e
DATA TYPES ..ttt ettt ettt st ettt s sb e st e st e s bt e sabeebeesaneenseens
DEVICE BEHAVIOR MODELScciiiiiiiiieeiiiieeiieeeireeesireeesseeessseeesssaeessssessssseenns
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS......ccoooviiiiiviieeeeinen.
Properties (UML AHFIDULES)c.ccoeeieeeiieieiieieeeeee e
Methods (UML OPErations)cocceuecuecvoiioiiisiineninenenenieeeseeeeeeneees
Events (UML INtETfACES)ooueveeiiiieiiiiieeseeeeeeee et
DEVICE INITIALIZATION AND FINALIZATION.......cociiiieeiirieeeieeeereeeeieeeeeveeeseveens
TRIHALIZATION ...t
Initialization and Error REPOFHINGc..ccccoveveceioiieiiiaiieieaeee e
FIRALIZALION ...t

EVENTS .ottt ettt et st e
ERRORS ...c.coiiiiiieititentect ettt ettt sttt e
ERROR CODES.......coiiiiiieiieniietinteetiettenteseeete sttt et s st ees et estesaeennesaeennenaee
Extended Error COdeccc..ccceeeeeiiiiieieeeeeee e
DEVICE INPUT MODEL........oooiiiiniiiiiniteniinieete ettt sttt sae oo
Error HaNAIING.............ccccooiiiiiiiiiiiiiiit ettt
MiISCOIIANCOUS ...t
DEVICE OUTPUT MODELSccoioiiiiniieiinteiententesieeteseene sttt saeennesaeennenaee
SYRCHIONOUS OQUIDUL ...ttt
ASYNCAFONOUS OQUIPUL ...ttt
DEVICE POWER REPORTING MODELcootiiiiiiiiieiienieeniie sttt sve e

Power State Dia@ram..................ccccccocieeiiiiiiiiiiiniiiiiiiieiteeeeee e
POWEF PrOPETLIEs.........cc.cccoviiiiiiiiiiiiiiiiiiiitce ittt
Power Reporting Requirements for DeviceEnabledc.cccccuu....
DEVICE INFORMATION REPORTING MODELcccoiiiiniiieniierenieeieneeeeeneeenae e
Statistics Reporting Properties and Methods.................c..ccccovvevcvaviennnnannn.
XML definitions for POS Device StatiSticsc.ccocrivenienincoieiieaiaennen,
UPDATE FIRMWARE DEVICE MODELcccooutiiiiiiiiiiinietenierenieeie e
DEVICE STATES ..ottt s s

UnifiedPOS Retail Peripheral Architecture

ii Table of Contents
Device State DiQ@ramccccceioieioiiiiiiiiiiiiiiteeeet et 55
VERSION HANDLINGc.uciiiiiiiiiiiieienii ettt st s s 56
DEPRECATION HANDLINGootiiiiiiiiieie ettt s e 57
HYDRA DEVICE CONSIDERATIONScoouiiuiiiiiiieienieeienieeiesieenesieesreeeeeeeseeene e 58
Initial Connectivity Model..................ccccooiimiiiiiiiiiiieie e 58
Control Object or Device Control (Control).........cccceeeverveienieniinieee 58
Service Object or Device Service (Service)ccooervrrererreierieeneeieneenne 58
Multi-Function (Hydra) Peripheral Devices...............ccccccceeoiiveecraiannanane. 59
CONSIACTALIONS ..ottt eeeeas 61
CHAPTER 1
COMMON PROPERTIES, METHODS, AND EVENTS 63
SUMMARY ..ottt s st b e 63
GENERAL INFORMATION.......ccuiiiiiiiiiiiiiiiiiiiict et s 66
Common PME Class DiG@Fam.............ccccccoucieiiiniiniinineneneeieese e 66
PROPERTIES (UML ATTRIBUTES) «..uveevteiieeienteenientesieeneeeseesesseensesseensesseensesseensenns 68
METHODS (UML OPERATIONS)ccutietiesieeeieresniensesseesesssessesseensesssensesseensesseensesses 79
EVENTS (UML INTERFACES)veettetieiiesteeeieeesseensesseesesssesesseensesssensesssensesseensenses 90
CHAPTER 2
BILL ACCEPTOR 929
SUMMARY ..ottt ettt st sttt st ebe et ae bbb s s eanennens 99
GENERAL INFORMATION.......ccutitiienieienienrenteteetteie st stebesaesesneneeeneeae e saesnesnenaens 103
CAPADIIILIES ..ottt et seve e 103
Bill Acceptor Class Dia@ramcccocevoeioieiinieiiiieesiene e 104
MOGEL..........oooeiieeeeee e 105
Bill Acceptor Sequence Diagramccccooeeveuieoeaieneiieeseeeeene 106
Bill Acceptor State Diagramcccccuoeevoeneeiiiiaeaieeeee e 107
DeVICe SHATIAGooeeeevieeieee ettt 107
PROPERTIES (UML ATTRIBUTES) ...eecuvteitieeiienieennreeieesreeseesereeseesssesseesssessseenns 108
METHODS (UML OPERATIONS) ..ccuttiiuvieriieniieeteenreeseessseeseesseeenseesssesssessssessseenns 113
EVENTS (UML INTERFACES)uvteitteiieeieenieenteeeeeeseessseesseesseessessssessessssesssesnns 117
CHAPTER 3
BILL DISPENSER 119
SUMMARY ..ottt et st s st r et st e e et s ae e 119
GENERAL INFORMATION.ccoiiiiiiiiiiieniieieenie ettt s s 123
CAPADILITIS ...ttt 123
Bill Dispenser Class Diagram................c.ccocoeaoieviioieneiiese e, 124
MOGEL..........oooiee e 125
Bill Dispenser Sequence Diagramcc.ccoceceiciioenciioieniieene e, 127
Bill Dispenser State Dia@ramccccocoeieieviioieeeieieeeeese e 128
Device SHAFINGocooiiiiiiie e 128
PROPERTIES (UML ATTRIBUTES) ...eccvvietieeiiieieeeeeeereesereeseessseeseesssesseesssessesnns 129
METHODS (UML OPERATIONS) ..cuviiiutietieeiieesreesreereeseseeseessseeseesssesseesssessseenes 134
EVENTS (UML INTERFACES)uvteiuieiiiestiesieenteeereereeseseeseesseseseesssessseesssssssesnns 137
CHAPTER 4
BIOMETRICS 139
SUMMARY ...ttt ettt sttt sttt nene 139
GENERAL INFORMATION.......couiiiiiiiiiiieiieiieiieiieie sttt s s 143
CAPADIIILIES ..ottt 143

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents iii

Biometrics Class Dia@ramcccccoioeeiiiieiiiieie it 145
MOGEL..........ooieee s 146
Device SHAFINGocooiiiiiiie e 147
Biometrics Sequence Diagramsccccucieniiioiiniiiniiinienie e 148
Biometrics State Diag@ramcccooccovoeiiiiiiioniiiiiiinieieee e 151
PROPERTIES (UML ATTRIBUTES)....ccvtertteetiesteeeeeereessreesseessseesseesssessseesssessseens 152
METHODS (UML OPERATIONS) ..cuviiiuvieiiesiieesteeereereesereeseessseeseesssesseesssesssesnns 159
EVENTS (UML INTERFACES)cteitteitiesteesereesteesreereessseeseessseeseesssesseesssessseene 165
CHAPTER S
BUMP BAR 169
SUMMARY ..ottt 169
GENERAL INFORMATION......couiiiiiiiiiiiiiiiiiieiieiceic sttt 173
CAPADILILIES ... 173
Bump Bar Class Dia@ramc.ccccoeveoeoieoieiiiiiiiniieneeeeeeeeeee 174
MOAEL...........ooooeeeeeeieeeeeee et 175
Input — Bump Barcooioiiiiiii e 176
OULPUL — TOMNC ..eeieiiiieeiiieite ettt sttt st saee e 177
DeViIce SRAVINGcoceiiriiiiiiiiiiiiiee et 177
Bump Bar State Diagramccccccoieceniiiviniiiiiniiiiiiciieneeeeeeeen, 178
PROPERTIES (UML ATTRIBUTES) ..cuveeuvetieeteiieiesieeerestesiesseensesseensesseensesseensesnens 179
METHODS (UML OPERATIONS)cvieuierteenrentieiesseensenseensesseensenseensesseessesseesesses 185
EVENTS (UML INTERFACES)vteuvitieniesteentesieeiesseensesseessesseensesseessesseensesssensesses 190
CHAPTER 6
CASH CHANGER 195
SUMMARY ..ottt s 195
GENERAL INFORMATION.ccuiiiiiiiiiiiiieiiieiieec s 199
CAPADIIILIES ..ottt et seve e 199
CashChanger Class Diagramcccccoveeoieviiieoiiiieieeee e 200
MOGEL..........oeoiiieeee e 201
Cash Changer Sequence Diagramcccccoeceeeeeiiaoeenciieaniiiee e, 205
Cash Changer State Dia@Famcccceoieaoeeiiiieiiiee e 206
DEVICE SHATIAG ..ottt 206
PROPERTIES (UML ATTRIBUTES) ...eecvvieitieeiieenieennreeieesreeseesieeenseesssesseesssessseenns 207
METHODS (UML OPERATIONS) ..cuviiiuiieiieneieenteeeneeereessseeseesssesseesssessseesssessseenns 219
EVENTS (UML INTERFACES)uvteitteiitesteenieenteeseeeseessseeseesseesseesssessessssessseenns 227
CHAPTER 7
CASH DRAWER 229
SUMMARY ...ttt et st st st r ettt eeeaee 229
GENERAL INFORMATION......ccoiiiiiiiiiiiieniieieenieeee st s 232
[0 T2 03 1 15 <t USRS 232
Cash Drawer Class DiG@ram................cccccocceioieceiieeie e 232
Cash Drawer Sequence Diag@ram.................cccccovuiieeeioianiiieeneee e, 233
Device SHAVINGocoiiiiiiiie e 234
PROPERTIES (UML ATTRIBUTES) ...eccvvietiesiiienieeeeieereesereeseeseseeseesssesseesssessseenns 235
METHODS (UML OPERATIONS) ..cuviiiuvieiiesiieesteeeereereesereeseessseeseesssesseesssessseenns 237
EVENTS (UML INTERFACES)uvteitieiiiesieesieesteessreereessseeseesssseseesssesssesssssssseenns 238

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

iv Table of Contents
CHAPTER 8
CAT - CREDIT AUTHORIZATION TERMINAL 241
SUMMARY ..ottt st 241
GENERAL INFORMATION......ccuiiiiiiiiiiiiiiiiieiieiieiieic sttt 245
DeSCHIPHION Of TEIMS ...ttt 245
CAPADILILIES ...t e 246
CAT Class DiAGFAMc..ccoooeiciiiiiiiiiieseeeeeet e 248
MOAEL..........c.oooveeeeeeeeeeee e 249
DeVice SRAVIIGcocoviriiiiiiiiiiiiieee et 253
CAT Sequence Dia@ram................cccccociuieciniiaciiniiiiiniiecneeeee e, 254
CAT State Dia@Fam................ccccocivviiiiiiiiiiiiiiieiiit et 255
PROPERTIES (UML ATTRIBUTES) ..c.veeuvetieuteiieiesreeeeensteseesseensenseensesseensesssensesnees 256
METHODS (UML OPERATIONS)cevteuierteenretieiesseeseseessesseensenseensesseesesseensesses 273
EVENTS (UML INTERFACES) «....ieuvitieiesteeteseeesiesseensesseessesseensesseessesseensesssensesses 283
CHAPTER 9
CHECK SCANNER 287
SUMMARY ..ot s 287
GENERAL INFORMATION........ccuiiiiiiiiiiiiieiiieiiieec st 291
CAPADIIILIES ..ottt et seve e 291
Check Scanner Class Diagramccccoeoeioeenceioiincciiniieeeeee e, 292
MOGEL..........oooiieeeee e 293
DEVICe SHATIAGooeeeeieeieee ettt 296
Check Scanner Sequence Diagramcccccoecvvceeveioinicieenineneaen, 297
Check Scanner State Dia@ramcccceeoiioeaviioeeniiieeieeseeeens 298
PROPERTIES (UML ATTRIBUTES) ...eecvvieriieeiiienieeereeieessreeseesseeeseesssesseesssessseenes 299
METHODS (UML OPERATIONS) ..ccuttiiuvieriieniieeteenreeseessseeseesseeenseesssesssessssessseenns 313
EVENTS (UML INTERFACES)uvteitieiieesieenieenteeseesseessseesseesssessessssessseesssessseenn 322
CHAPTER 10
COIN ACCEPTOR 325
SUMMARY ...ttt et st st st r et eae e s eeeaie 325
GENERAL INFORMATION.......coiiiiiiiiiiiieniieiienieeee et s 329
CAPADIIITIS ...ttt 329
Coin Acceptor Class Dia@ramc.cccceeoeeeianeioieneiieeeeee e 330
MOGEL..........oooiee s 331
Coin Acceptor Sequence Diagramcccccevoeivciniiioeiniiiniaeeeeean, 332
Coin Acceptor State DiaA@ramccccccuoveevciioiiniiiiienieieeieseeees 333
Device SHAFINGocooiiiiiiie e 333
PROPERTIES (UML ATTRIBUTES) ...eecuvietieeiiienieeeeeeereesereeseesiseeseesssesseesssesssesnns 334
METHODS (UML OPERATIONS) ..cuviiiuvieiiesiieesteeeereereesereeseessseeseesssesseesssessseenns 339
EVENTS (UML INTERFACES)utteitieitiesteesteesteesreereeseseeseesssseseesssessessssessseenns 343
CHAPTER 11
COIN DISPENSER 345
SUMMARY ..ottt 345
GENERAL INFORMATION.......couiiiiiiiiiiieiieiieiieiieie sttt s s 348
CAPADIIILIES ..ottt ettt 348
Coin Dispenser Class Diagram................ccoocueeveioiesieeeieenieeieeisenveeeees 349
Coin Dispenser Sequence DiG@ramccccccouvvveveeenieivieenieeniieneenneen, 350
Coin Dispenser State DiA@ramccoovueeceiiiesieeeiiienieeeeeeeeseeeeees 351
MOt 352

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents v

Device SRAVINGocooiiieiiie e 352
PROPERTIES (UML ATTRIBUTES) ...eecvvietieeeiienieeeeeeereesireeseessseeseesssesseesssessseenns 353
METHODS (UML OPERATIONS) ..cuviiiutietieeiieesieeereereesereeseessseeseesssssseesssessseenes 354
EVENTS (UML INTERFACES)uvteitieitiesieesreesreesseereessseeseesseeeseesssesseesssessseenns 356

CHAPTER 12

ELECTRONIC JOURNAL 359
SUMMARY ..ottt st s 359
GENERAL INFORMATION......ccuiiiiiiiiiiiiiiiiiieiieiieicsie sttt 363

CAPADILILIES ... 363

Electronic Journal Class Diag@ramcccccucvonnininincieesieenen, 364

MOAEL..........coooveeeeeieeeeee et 365

DeVice SRAVIIGcoceiiriiiiiiiiiiiieee et 366

Electronic Journal Sequence Diagrams..............c..c.ccccoeeiciviinicnienenennennn. 367

Electronic Journal State DiGgramc.ccccoceeeecoioaciiiniinenenenee, 369
PROPERTIES (UML ATTRIBUTES).....cetesteetesteesiesseerenseeneenseensesseensesseesesseensesnes 370
METHODS (UML OPERATIONS)evteuierteenreteeiesseesenseessesseensenseensesseesesseensesses 376
EVENTS (UML INTERFACES)ccttetteierteeteeeeesiesteensenseessesseensenseessesseensesssensesses 385

CHAPTER 13

FISCAL PRINTER 389
SUMMARY ...ttt ettt ettt sttt st ettt eue et s s e 389
GENERAL INFORMATION.......ccutitiienieienienrenteteetteie st stebesaesesneneeeneeae e saesnesnenaens 398

Fiscal Printer Class Diagramc.cccocovoeioieniioiinieiieneiee e, 399

GeNneral REGUIFEMENLSc..ccoveeueeereesiieeieeiiesae et sae et sere e e naee e 400

Fiscal Printer MOdes...............ccccovoiioiiiiiieiiiieeeee et 401

MOGEL..........ooooeiiee e 402

Error Model..............coccoooiiiiiiiiiieeeee e 403

Release 1.8 additional Model clarifiCationscccocovevvueeceecveeivnecneennn, 404

Fiscal Printer StALSccoociieeviioieiiieeeee et 406

DoOCUMENnt PHINEINGcoooeiiiieeeeeeeeie ettt 408

Ordering of Fiscal Receipt Print Requestscccccecveveniiivenccanenennns 409

Fiscal ReCeipt LAYOULSc..covueecueeeiieeiresieesieeeieeeieevtesveesaesiveaaee e e 411

Example of a FiScal ReCEIPL............c..cccoovvueeeeeiieiiieiiesii e 412

Totalizers and FiScal MemOTY..........c..ccceovueeeueeiieiiieieeeiiesie e 413

COURLETS ...ttt ettt 413

VAT TADIES ...t 413

Receipt DUPIICATLION.c.ooeeeiiieeieeiecie e 413

Currency amounts,percentage amounts, VAT rates,and quantity amounts .. 414

CUFTENCY CHANGE ...t 414

DEVICE SHATIAG ..ottt 414
PROPERTIES (UML ATTRIBUTES) ...eecvvieitieeiieenieeenreeteessreeseesseesnseesssesseesssessseenes 415
METHODS (UML OPERATIONS) ..cuutiiuiierieesiieenteeneeereessseeseesseeeseesssesseesssessseenes 453
EVENTS (UML INTERFACES)uvtetieiieesteenieenteeseesseessseeseessseaseesssesssessssessseenes 530

CHAPTER 14

HARD TOTALS 535
SUMMARY ...ttt et st st st r et e e e s ee e 535
GENERAL INFORMATION. ..ottt s 539

CAPADILITIS ...t et 539

Hard Totals Class DiA@Famc..ccoociaieioiioiiiiieie et 540

Hard Totals Sequence Diagram.................cccooeiieoieaieiieniiieeieeee e, 541

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

vi Table of Contents
MOGEL..........oooeiiee s 542
Device SHAFINGocooiiiiiiie e 544

PROPERTIES (UML ATTRIBUTES) ...eecvvietieeeieenieeeeeeereesereeseestreeseesssesseesssesseenns 545
METHODS (UML OPERATIONS) ..cuviiiutietieeiieesieeereereesereeseessseeseesssssseesssessseenes 547
EVENTS (UML INTERFACES)uvteitieitiesieesreesreesseereessseeseesseeeseesssesseesssessseenns 557
CHAPTER 15
IMAGE SCANNER (BAR CODE READER) 559
SUMMARY ..ottt 559
GENERAL INFORMATION........ccuiiiiiiiiiiiiiietiienceiesc et 563
CAPADILILIES ... 563
Image Scanner Class Dia@ramccccocuvuviroininencoeiesc e 564
Image Scanner Sequence Diagram Ic.ccccccovvieviniiioinicincnneenen, 565
Image Scanner Sequence Diagram 2ccccccecevveeviniiiciniciicneanenn, 566
Image Scanner Sequence Diagram 3ccccccoceevniiininiccoiniciocneenenn, 567
Image Scanner Sequence Diagram 4c...cccoceevvveiviniioinicincneecnen, 568
MOGEL.........cooiieeeeee et 569
DeVice SRAVINGcocoiiriiiiiiiiiiiiiieet et 569
Image Scanner State Diagramcccocceeeviievinicininiicoiniieieenen, 570
PROPERTIES (UML ATTRIBUTES) «.cuveeuveitieeteiieiesreeerenseeneesseensenseensesseensesssensesnnas 571
METHODS (UML OPERATIONS)cvieuierteenrentieiesseensenseensesseensenseensesseessesseesesses 579
EVENTS (UML INTERFACES)vteuvitieniesteentesieeiesseensesseessesseensesseessesseensesssensesses 580
CHAPTER 16
KEYLOCK 583
SUMMARY ..ottt s 583
GENERAL INFORMATION.ccuiiiiiiiiiiiiieiiieiieec e 586
CAPADIIILIES ..ottt et seve e 586
Keylock Class Dia@ram...............ccoocouoeviiieiiiieieeee et 586
Keylock Sequence Diagrami...................ccoocuucieviioianiioiieiieee e 587
MOGEL..........oooiiieeee e 588
DEVICE SHATIAGooeeeieeieee ettt 588
PROPERTIES (UML ATTRIBUTES) ...eecvvieitieeiiienieeeieeieesreeseesseeeseessnesseesssessseenns 589
METHODS (UML OPERATIONS) ..cuviiieiieiiereieeteentesreessreeseesssesseesssesseesssessseenes 591
EVENTS (UML INTERFACES)uvteitieiitenieeniieenieenseesseessseesseesseessaesssesnsessssesssesnns 592
CHAPTER 17
LINE DISPLAY 595
SUMMARY ...ttt et ettt st st s et e e eae e e neeaie 595
GENERAL INFORMATION......ccoiiiiiiiiiiiieniieieenieeee st s 599
CAPADILITIS ...t 599
Line Display Class Dia@ram.................ccccucueuoeioeaneiieeieeee e 600
Line Display Sequence Dia@ram................cccccceeeeveenieioeeniiieiieee e, 601
MOGEL..........ooeiieeeee s 602
Display MOAEScccoooeiieiiiiee et 603
Data Characters and Escape SeqUenCes.................c.ccuveevceroeeenceeeeneaeen, 604
DeVice SHAVINGocooiiiiieee et 604
PROPERTIES (UML ATTRIBUTES) ...eccvvietieeeieenieeeieereesereeseestseeseesssesseesssesssesnns 605
METHODS (UML OPERATIONS) ..cuviiiuvieiiesiieesteeeereereesereeseessseeseesssesseesssessseenns 626
EVENTS (UML INTERFACES)uvteitieiiiesieesieesteessreereessseeseesssseseesssesssesssssssseenns 641

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents vii

CHAPTER 18
MICR - MAGNETIC INK CHARACTER RECOGNITION READER......... 643
SUMMARY ...ttt st 643
GENERAL INFORMATION......ccuiiiiiiiiiiiiiiiiieiieiieiieic sttt 646
CAPADILILIES ... 646
MICR Class Dia@rami...............cccccueoueieieiiiiiiniiieieeeee et 647
MICR Sequence Diagram.................c.ccccccoveecuiniieciniiiiiniiiiiiicineieeeeeen, 648
MOAEL..........c.oooveeeeeeeeeeee e 649
DeVice SRAVIIGcocoviriiiiiiiiiiiiieee et 650
MICR Character SUDSTITULION.c..ccoeecueeeieeeieeceeeie e 651
PROPERTIES (UML ATTRIBUTES) ..cuveeuvetieeteiieiesieeetentteniesseensenseensesseesesseensesnnas 652
METHODS (UML OPERATIONS)cevteuierteenretieiesseeseseessesseensenseensesseesesseensesses 656
EVENTS (UML INTERFACES) «....ieuvitieiesteeteseeesiesseensesseessesseensesseessesseensesssensesses 660
CHAPTER 19
MOTION SENSOR 663
SUMMARY ...ttt ettt ettt sttt st ettt eae b s senene 663
GENERAL INFORMATION.......ccutitiienieienienrenteteetteie st stebesaesesneneeeneeae e saesnesnenaens 666
CAPADIIILIES ..ottt et seve e 666
Motion Sensor Class DiAQramcccovuuoeeiiiieniieeni et 666
MOGEL..........oooiee e 667
DEVICE SHATIAGooee ettt 667
Motion Sensor Sequence DiAGram.............cc.cccueivueeeiesiuianienieeirienieeceeeinens 668
Motion Sensor State DIiAQIaNMccoeevecuieeieieiiesieiieeeee e eree e v 669
PROPERTIES (UML ATTRIBUTES) ...cecvvieitieeiiientieneeeeieesreeseesseeeseesseesseesssessseenns 670
METHODS (UML OPERATIONS) ..ccuttiiuvieriieniieeteenreeseessseeseesseeenseesssesssessssessseenns 671
EVENTS (UML INTERFACES)uvtetieiieenieesieesteeseesseessseeseesssessseesssessessssesssesnns 672
CHAPTER 20
MSR - MAGNETIC STRIPE READER 675
SUMMARY ...ttt et st st st r et eae e s eeeaie 675
GENERAL INFORMATION. ..ottt s s 678
CAPADILITIS ...t 678
Clarifications for JIS-II data handling...........cccoeoeerieieiinienciieeceee 678
MSR Class DiG@Iam..............c.ccooooiieeiieieiieiese ettt 679
Device Behavior Model...................ccccoooiiiieiiiiiaiiiiee it 680
INput — MISR .o e 680
OUtput — MISR ... 680
DeVice SHAFINGocooiiiiiiee e 680
MSR Sequence Dia@ram...............ccccceioieniiiiiioiieiiiiit et 681
MSR StA1e DIAGVAMS ...ttt 682
PROPERTIES (UML ATTRIBUTES) ...eectvietieeiiienieeeereereesereeseeseseeseesssesseesssesssesnns 684
METHODS (UML OPERATIONS) ..cuviiiuvieiiesiieesteeeereereesereeseessseeseesssesseesssessseenns 696
EVENTS (UML INTERFACES)uvteitieitiiesteeeieesteesreereeseseeseesssseseesssessseesssessseenns 697
CHAPTER 21
PIN PAD 701
SUMMARY ...ttt ettt sttt sttt nene 701
GENERAL INFORMATION.......oiiiiitiieiiiieeiieeeieeeeetreeeeereeesaveseeareeeesaeeeaseeeneseseeneas 705
CAPADIIILIES ..ottt 705
PIN Pad Class DiG@FAM..............cc.cccueecieiireieeiie et st e eiae e eneees 706
PIN Pad Sequence Dia@ramcccccueeeeeiiiencieeiianiieeie e 707

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

viii Table of Contents
Feature Not SUPPOTLEdc.cccoeiiiiiiiieie it 708
Note on Terminologyccccoucuieiiieiiiiieieet et 708
MOGEL..........oooiieeee s 709
DeVice SHAFINGocoeiiieieee e 710
PIN Pad State Diagram................cccooceiiioeiieieiieiee et 711
PROPERTIES (UML ATTRIBUTES) ...eecuvietieeiiienieeeeieereesreeseeseseeseesssesseesssessseenns 712
METHODS (UML OPERATIONS) ..cuvtiiuvieiieseieesieeereereesereeseessseeseesssesseesssessseenns 723
EVENTS (UML INTERFACES)uvteitieiiiesieesieesteesseeseeseseeseesssseseesssessessssessseenns 728
CHAPTER 22
POINT CARD READER / WRITER 731
SUMMARY ..ottt 731
GENERAL INFORMATION........ccuiiiiiiiiniiiiiiieiiient et 736
CAPADILILIES ... 736
Point Card Reader Writer Class Diagram.................ccccocvcnvenenecneennnn, 737
MOGEL..........oooeiieee e e 738
INPUE MOEL ...t 738
OULPUL MOAEL.....oiiieiieieecee et 739
Card Insertion DIiGQFAM................cccccccoviuiimiininieiiiieieeese e 740
Printing Capability.............ccccocioiiiimiiiiiniineieiee e 741
Cleaning Capabilitycccocuciiiiiiiiiiiiiceee e 742
Initialization of Magnetic Stripe Dataccccoccoeirvinincocoiciiciaiinennns 742
DeViIce SRAVIIGc..cocovuiriiiiiiiieiiiciet et 742
Data Characters and Escape Sequences...................cccocvcniinvincnceeennnn, 743
Point Card Reader Writer Sequence Diagramc.ccocceeeeeeevennecn. 745
Point Card Reader Writer State Diagram...................cccccoveveercoeoecrncnnen, 746
PROPERTIES (UML ATTRIBUTES).....ceteittetesteesiesseerenseeseenseensenseensesseesesssensesnes 747
METHODS (UML OPERATIONS)evteuierteenretiesiesseensenseesesseensesseensesseensesssensesses 768
EVENTS (UML INTERFACES)ccttrtteierteententeeniesreensenseessesseensesseensesseensesssensesses 776
CHAPTER 23
POS KEYBOARD 781
SUMMARY ..ot 781
GENERAL INFORMATION........ccuiiiiiiiiiiiiieiiieisiec st 784
CAPADIIILIES ..ottt et sebe e e 784
POS Keyboard Class Diagramcccccouoieveioiaoenoeiiieeese e 784
POS Keyboard Sequence Diagramc.ccccceeceeeceioeanciioeenineaeaeeen, 785
MOdGEL..........ooooiieeeee e 786
Keyboard Translationcccueecvierieecieeniienie et eve e 786
DEVICE SHATIAGoeeeeieeieee ettt 786
PROPERTIES (UML ATTRIBUTES) ...eecvvterieeeiieenieeereeieesreeseesseeenseesssesseesssessseenns 787
EVENTS (UML INTERFACES)uvteotteiitesieeneieenteeseeeseessseeseesssessaesssessessssesssennns 789
CHAPTER 24
POS POWER 793
SUMMARY ...ttt et st st st e n et sae e e neenie 793
GENERAL INFORMATION. ..ottt s 796
CAPADILITIS ...ttt 796
DeVice SHAVINGocooiiiiiiee e 796
IMOEI ...ttt nee e 797
POSPower Class Dia@ram.................cccccoueeceioiaiiiieeie e 798
POSPower Sequence Diag@ram.................ccccuciiviienoiiiiiiniiiiieiie i 799

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents ix
POSPower Standby Sequence Diagram..................cccccoeevceeoeencinoeennieenn, 800
POSPower State Dia@rami...............cccccovievoiiiiiniiiiiiiiienie e 801
POSPower PowerState Diagram - part Iccccoocevvceenccniiiineencnens 802
POSPower PowerState Diagram - part 2ccccccuceiveencenoieneeneanens 803
POSPower PowerState Diagram - Part 3ccccecevviiveenienoienieneanens 804
POSPower State chart Diagram for Fan and Temperature 805
POSPower Battery State Diagram...............c.ccccooeeveeniiioianeiniiaienieancns 806
POSPower Power Transitions State Diagram.................cccccccevcevoeeneeencnnns 807

PROPERTIES (UML ATTRIBUTES) ...eectvietieeeiiesiieeeieereesereeseeseseeseesssesseesssesseenns 808
METHODS (UML OPERATIONS) ..cuviiiuvietiesiieesteeereereesereeseessseeseesssesseesssesseenes 815
EVENTS (UML INTERFACES)cteitteitiesteesereesteesreereessseeseessseeseesssesseesssessseene 818
CHAPTER 25
POS PRINTER 821
SUMMARY ..ottt 821
GENERAL INFORMATION........ccuiiiiiiiitiiiiiietiieiietesc e 828
CAPADILILIES ... 828
POS Printer Class Dia@ram.................cccocvcimineneniiiieiniiiaineneneeeeees 829
POS Printer Class Diagram Updatescccccocvvmvininincoeoinnenen, 830
MOGEL.........cooieeeeeeee e 831
DeVice SRAVIIGcocovuiriiiiiiiiiiiiiiee et 837
POS Printer State Diagrami.....................ccccceucieviniiecinicininiiiineieeneeeen, 838
Page Mode Printing State Diagram.................cccoceeecoeoiciiiinicneneneeee, 839
“Both sides printing” sequence Diagramcccccocuvirvencneneenncn, 840
Page Mode printing sequence Diagram.................c.cccccceeeciviniinienenenennn, 841
Data Characters and Escape Sequences....................cccoucvcniinvinencecennnn, 842
POS Printer State Diagrams (Low Level)..............ccccccuvivvninincnceenen, 846
PROPERTIES (UML ATTRIBUTES) «.cuveeuveteeeieiieiesteeeeenstesiesseensesseensesseensesseensesnens 851
METHODS (UML OPERATIONS)evteuiesteenretieiesseensenseessesseensenseensesseesesssessesses 896
EVENTS (UML INTERFACES)vteuvitieniesteentesieeiesseensesseessesseensesseessesseensesssensesses 932
CHAPTER 26
REMOTE ORDER DISPLAY 939
SUMMARY ..ottt 939
GENERAL INFORMATION........ccuiiiiiiiiiiiiiieiiieiieec st 944
CAPADIIILIES ..ottt seve e e 944
Remote Order Display Class Diagramccccoceeeeeeeoencianeniaeneene 945
MOGEL..........ooooeiieeeeee s 946
DEVICE SHATIAGooeeevieeieee et 950
PROPERTIES (UML ATTRIBUTES) ...eecuviertieeiieenieenreeieessreeseesieeeseesssesseesssessseenns 951
METHODS (UML OPERATIONS) ..cuutiiuiierieesiieenteeneeereessseeseesseeeseesssesseesssessseenes 962
EVENTS (UML INTERFACES)uvtetieiieesteenieenteeseesseessseeseessseaseesssesssessssessseenes 979
CHAPTER 27
SCALE 983
SUMMARY ..ottt s 983
GENERAL INFORMATION.......ccuiiiiiiiiiiiiiiiiiiieiinccc st 986
CAPADILITIS ...ttt 986
Scale Class DIa@ram..............c.cccoooueeiioieii i 987
Scale Sequence Diagram..................cccceeeieviioiiieiiiieeeeeee et 988
MOGEL..........ooeieee s 989
DeVice SHAFINGocooiiiiieee e 989

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

X Table of Contents
PROPERTIES (UML ATTRIBUTES) ...eecvvietieeeiieniieeereereesereeseessseeseesssesseesssessseenns 990
METHODS (UML OPERATIONS) ..cuviiiuvietieeeieesieeeereereessreeseessseeseesssesseesssessseenes 997
EVENTS (UML INTERFACES)uvtetieitiieiteesiieesteesseeereessneesseessseesseessssssseesssesssens 1000

CHAPTER 28
SCANNER (BAR CODE READER) 1003
SUMMARY ..ottt 1003
GENERAL INFORMATION.......ccuiiiiiiiiiiiiiiiieieiieiiec et 1006
CAPADILILIES ...ttt 1006
Scanner Class DIiGFAMccccoveviriniiiiiiiiiiiseet s 1006
Scanner Sequence Diagramccccoceveiniieiiniieciniiiniiieencece 1007
MOAEL...........c.oooveeeiceeeeee e 1008
DeVice SRAFINGccoviiiiiiiiiieieeee et 1008
PROPERTIES (UML ATTRIBUTES)eeeviiiietieiieieeeeeseesesseeneesseensesseensessnessessnens 1009
EVENTS (UML INTERFACES)veevtiuieteeereteeiesieesseseessesseensesseensesseessessesssesnens 1014
CHAPTER 29
SIGNATURE CAPTURE 1017
SUMMARY ..ottt 1017
GENERAL INFORMATION.ccuiiiiiiiiiiiiiiieiiiec st 1020
CAPADIIILIES ..ottt ba e s 1020
Signature Capture Class Diagram................ccccoocevvevoeniaoeniaeneaenene 1021
Signature Capture Sequence Diagram...................ccccceueeeoenceanenoeineneanns 1022
MOt 1023
DeViICe SHATIAGoceeeeieeeeiie ettt 1024
PROPERTIES (UML ATTRIBUTES) ...eecvvieiteeniieeieenereereeseeereesseeeseesseesnseesseesnses 1025
METHODS (UML OPERATIONS) ..c.utteiuiiesiienereeieesseeereessaesnseessseeseesseesssessseesnses 1029
EVENTS (UML INTERFACES)uvtitieeiieesieesiieenieenseesreessnesseessseesseesssesssessseesnses 1031
CHAPTER 30
SMART CARD READER / WRITER 1035
SUMMARY ...ttt ettt st st st et e e ene e e eaeesaeeanes 1035
GENERAL INFORMATION. ..ottt et s esne e s 1039
CAPADILITIS ...t 1039
Smart Card Reader / Writer Class Diagram.................cc.ccoceevceeoeeneneeennnns 1040
MO 1041
Card Insertion Diagrami.................cccoouoieieiiiaiiiiieeee e 1044
DeVice SRAVINGocoieiiiieie e 1045
Data Transfer MOdescccocoeioieiiiieiiiiee e 1046
Smart Card Reader / Writer Sequence Diagramcccccccoeceeeeenne.. 1047
Smart Card Reader / Writer State Diagram..................cc.ccoceevceeoeeecenenennnns 1048
PROPERTIES (UML ATTRIBUTES)....ccuttesttesuieesreeseeeereesaeereesseeesseesseesseesssessees 1049
METHODS (UML OPERATIONS)uvieitviesieesiieeieeseeeereessneereessseesseesssssseessessssees 1055
EVENTS (UML INTERFACES)cieitteitiesteesireesteesseeereesaeereessseesseesssssssessssesssees 1060
CHAPTER 31
TONE INDICATOR 1065
SUMMARY ..ottt 1065
GENERAL INFORMATION.......couiiiiiiiiiiiiiiiieieieiiet ettt 1068
CAPADIIILIOS ..ottt et see e n 1068
Tone Indicator Class Dia@ram.....................cccovveveeieieiieeneeieireeienieeeenes 1068
Tone Indicator Sequence Diag@ramccccoovueeeeiaveeeeeceenearenseannns 1069

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents Xi
MOEL.........ccooeioeeeie e 1070
Device SHAVINGc..ccoeiieiii e 1071

PROPERTIES (UML ATTRIBUTES) ...eccvvieteesiieeieeseeeereeseeeereesteeeseesseessseesssessses 1072
METHODS (UML OPERATIONS)uvieiuvieieenireeieesereereessaeeveessseesseessesssseessessssees 1075
EVENTS (UML INTERFACES)uvtetieitiieiteesiieesteesseeereessneesseessseesseessssssseesssesssens 1077

APPENDIX A

OLE FOR RETAIL POS — OPOS IMPLEMENTATION REFERENCE......... 1
WHAT IS “OLE FOR RETAIL POS?” ..ottt e 1
WHO SHOULD READ THIS SECTIONcccviiieiiieeiiieesirieeeieeesiveeeiveeensvesessssessnsseeans 2
GENERAL OLE FOR RETAIL POS CONTROL MODELcccccvieeiiieeniiieeevieeeieeeans 2
OPOS DEFINITIONScuttitiiiiieeteeesteeeeereeeeireeestreeassseeeassessssesasssesssssesessssessssseeans 3
DEVICE CLASS ..o et 3
Control Object 0F CO...........ccccccviviiiiiiiciciiiiteeee et 3
Service ObJect OF SOcccociiiiiiriiiiiiiiceetet s 3
OPOS Control 08 CORFOLccoeeeiieeeeiiieeeece e 3
How AN APPLICATION USES AN OPOS CONTROLcccccvieeiieeeiiieenireeeeveeeeiveens 4
WHEN METHODS AND PROPERTIES MAY BE ACCESSEDcccceevivieeeriieerieeeiieenns 5
MEIROUS ... ettt 5
PrOpertios...........ccccooceiiiiiiiiiiiiiiiii e 5
STATUS, RESULT CODE, AND STATE MODEL......cccoouvttieeiiinrieeeeeiireeeeeesinreeeeeeeennnes 7
SEATUS MOTEL ... et 8
Result Code MOdeLc.....oooeeoiiieeeee e 8
SUAEE MOEL..............ooooeeeeeeeeee e e 9
DEVICE SHARING MODEL.......cccutiiiiiiieiiieeiiieeeiieeeireeeireeesseeeseseeessaeessssessnsseanns 10
EXCIUSIVE-USE DOVICES ... 10
SHATADIE DEVICES ... 10
EVENTS Lottt et e ettt e et e e e tbee e tbeeeessaeesabaeeessseeenssaeensseanns 11
OPOS Event Registration Sequence Diagramcccccoceeencieeenncnnne. 13
INPUT MODELciiiiiiieiiiieciiee ettt et e et eeeaae e etteeestbeaesaeeessseaasssaeeessseeessseanns 14
OUTPUT MODELcvtiiiiiieiiieeeiieeeeiiteeetteesteeesaaeeseaaeestreasssseeessseaassseeessssessssseanns 16
SYRCHIONOUS QUIDUL ...ttt 16
ASYNCHIONOUS QUIDUL ...ttt 16
DEVICE POWER REPORTING MODELcccoiuiiieiiiieiieeeiiee e eeveeeeteeeeaaeeeiveeas 17
MOAEL...........eeeeeeeeeeeeeeee et 17
PrOPEFIIOS ...t s 18
Power Reporting Requirements for DeviceEnabledcccoeuvn.. 19
DEVICE INFORMATION REPORTING MODELoccoiviiiiiiiiecieeecieeeeree e 20
Statistics Reporting Properties and Methods..................cccccocevevieiencnannnanne.. 20
UPDATE FIRMWARE DEVICE MODELcccoiuiiiiiiiieiieeeivee et eeveee et eaaee e as 21
OPOS COMPONENT DESCRIPTIONSoeiiiiiieeiuieeeiireeesireeeereeesreeeesseeesasesesneeens 22
SECTION 1: OPOS DATA TYPES.....oiiioiiiiiiiie ettt ettt ettt e et et e eveeesaneeenens 23
SECTION 2: OPOS INTERFACE DESCRIPTIONScccvtiieiiieiiiieenirieesreeeeveeeeereeennns 25
OPOS COMMON PROPERTIES, METHODS, AND EVENTScccovvviiiiiiiriieeeeeinenn. 26
COMMON PFOPEITIES.......c..eeeeeeee ettt 26
COMMON MEROUS ... 27
OPOS Programmatic NAMEScccccveeiueecueesieiieanieeniieeieeniee s enieeseee e 28
PrOPEIIIOS ... s 29
MEIROCS ... 45
EVONLS ..o ——— 57
PERIPHERAL INTERFACESooiiitiiiiiiiieeiiiee et e et e eiteeeiveeeeaeeesiveeaeteeesaaneeennaeaens 61

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

xii Table of Contents
OPOS: CASH DRAWERcoiiiiiiiiiiiiiciiicicce e s 62
Visual Basic Command EXamples.ccccoooecoeioieviiciiniiieeieeeeee, 62
Initializing Properties, Methods, and EVentscccccccoovvencinciencnanane. 62
Capabilities, Assignments & Descriptions Properties, Methods,and Events .. 62
Cash Drawer Operations Properties and Methods..................cccccoovvcencenne. 63
Terminating MEtOASc.cccooouiiiiiiiiiieeet et 63
Visual C++ Command EXAmples.cccccooeioiioieiiiiiiiiiieiiieeeeee 64
Initializing Properties, Methods, and EVentsccccccoevvenciaciennanane. 64
Capabilities, Assignments & Descriptions Properties, Methods,and Events .. 64
Cash Drawer Operations Properties and Methods..................ccccooevcenceene. 65
Terminating MEtOASc.cccooouiiiiiiieiieeee e 65
OPOS: MICR ..ottt ettt ettt sttt s sa e 66
Visual Basic Command EXAMPIes.ccccceceioieviioiiiiiiii e 66
Initializing Properties, Methods, and EVentsccccccoovvenciaciencnanane. 66
Capabilities, Assignments & Descriptions Properties,Methods,and Events .. 66
MICR Operations Properties, Methods, and EVents................ccccocceeeenenn.. 67
Terminating MetOASc.cccooouiiiioiiiiieeee et 68
Visual C++ Command EXamples.cccccooceioiioiiiiiiiiiieieiiieeeeee 69
Initializing Properties, Methods, and EVentsccccccovvvenciaciencnanane. 69
Capabilities, Assignments & Descriptions Properties, Methods,and Events .. 69
MICR Operations Properties, Methods, and Events................ccccocceveennnn.. 70
Terminating MEtNOASc.cccooouiiiiiiiiiiieeee e 71
SECTION 3: OPOS REGISTRY USAGEccoeciiiiiiiiiiiiiiiiiiiinicccccccic s 72
Service Object Root RegiStry Keyccccuoveiieciaieiiiiee et 72
Device ClASS KEYSooueiiiiiiiieee et 72
Device Name Keys and Values................cccooevceeviaieiieicieniiieeieee e 73
Logical Device Name Valuesc.cccccuoieioiioieniiiieii e 73
Service Provider Root RegisStry Key.............ccuviiveioiioieiiiiienieiese e 74
EXAMPLE ... 74
SECTION 4: OPOS APPLICATION HEADER FILEScccccoouiiiiiiiiiiiiiiiiciiicne 76
SECTION 5: TECHNICAL DETAILSccoiiiiiiiiiiiiiiiiiicicicccccc e 77
System Strings (BSTR).......ccccoiieiiiieeie ettt 77
System String CharacteriStiCsoouervrrieriiriereeiere e 77
System String USAZE........eeueeeeruiriereeiereriieieeie st ecete et see e enee e 77
System Strings and Binary DAt...................ccocccovevoiiiieiieiieiiiee e 78
Mapping of CRAFACIEFSetcc.coeeeiiieiei et 79
SECTION 6: RELEASE 1.5 API CHANGE: CLAIMDEVICE AND RELEASEDEVICE... 80
SECTION 7: OPOS APG CHANGE HISTORYcccccovviiiiiiiiiiiiiiiiiiiiccccicicne 81
REIEASE 1.01 ... 81
REIEASE 1.1 ..o 82
REICASE 1.2 ..o 84
REICASE 1.3 ..o 86
REICASE 1.4 ..o 88
REICASE 1.5 ..o 89
REICASE 1.6 ... 91
REICASE 1.7 ..o 92
SECTION 8: OPOS CONTROL PROGRAMMER’S GUIDEccccoeoiiuiiuiiniiiiiiiiiiiennene 93
Who Should Read This SeCtion...............ccccoeciiieceiiiaiiiiae it 93
General OLE for Retail POS Control Modelcccccccovovioinciioannann. 94
OPOS DEfINILIONS ..ottt 95
DEVICE ClaSS ...eoneieieieeiieie ettt 95

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents xiii
Control ObJect OF COouiiiiiieieeieeee et 95
Service ObJECt OF SO ...cuiiiiiieiiieeeeeee ettt 95
OPOS Control or CONtrolcoceeeeeiiieierieieeeee e 95

INLErfACe OVErVIEWcciieiiiieeeee et 97
MELROCS ...t 98
Open MEethodoo.eeiiiee e 98
CloSE MEthOd.......oouieieeieieeee e 98
Other Methodscoiuieiiiieeeeee e 98
PFOPEFTIES ...t 99
SHrNG PrOPEILICS ...ovieuiieieieieeeetee ettt s 99
LONG and BOOL Propertiescceeeeeereereesieieseeneeseeieeeeeseeeeeneeenes 99
Other Property TYPeS....coeeuerieieeieieeeeeeet et 99
EVORES .ot 100
Architecture: Firing an Eventccooooviiiiiiineeeceeeee e 100
Architectural Issue: Freezing Events by the Containerccc........ 100
Architectural Feature: Freezing Events by the Application 101
Summary of Event Firingccccooiiiiiiiiiieee e 101
Control Object ReSpOnSibilitiesccooevoiioieiciiciiniieee e, 102
IMETROAS ...t 102
PrOPEILICS ...ttt 105
EVENLS ..ottt 106
Service Object Responsibilities and Implementation...................c.cccc........ 110
IMETROAS ...t 110
PrOPEILICS ...ttt 117
EVENLS ..o 119
OPOS CPG Change HISIOTYc.cccoicieiiiiiiiieeeeee e 120
ReLease 1071ooiiee ettt 120
REIEASE 1.1 .ottt 120
REIEASE 1.2 . ettt 121
ReIEASE 1.3 ettt 122
REIEASE 1.4 ... ettt 123
ReIEASE 1.5 ettt 123
REICASE 1.6ttt 124
REICASE 1.7 ettt 124
Common Control OBJEcts............ccccoooueiiiieiiiiieeiiee e 125
FeatUIESeeiiieeieeee e 125
Availability and FUture............cocooiieiinieieeeeeeee e 125
OPOS Internal Header Filescccccooeioiiieiiiiiieiiiieiieee e 126
APPENDIX B
JAVA FOR RETAIL POS — JAVAPOS IMPLEMENTATION REFERENCE 1
WHAT IS JAVA FOR RETAIL POS?......cccooiiiiiiii 1
BENEFITS ...ttt 1
DEPENDENCIEScoooviuiiiimiiiiiiiiiie et 2
RELATIONSHIP TO OPOScoiiiiiiiiiiiiiiii s 2
WHO SHOULD READ THIS SECTIONccovviiiiiiiiiiiiiiiiiiiciccnec s 2
APPENDIX OVERVIEWooiiiiiiiiiiiiiiiiiiiiiic s 3
ARCHITECTURAL OVERVIEWcooiiiiiiiiiiiiiiiiiici s 3
ARCHITECTURAL COMPONENTScooiiiiiiiiiiiiiiiiiiic s 4
Additional Layers and APISccccocoeviiieeiiiiieiieieeiieeeee e 5
JavaPOS Development ENVIFORMENLc..cccuevcuieiieeieeacienieeieenieesieenieenes 5

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

xiv Table of Contents
DEVICE BEHAVIOR MODELSuviiiiiieeiiieeeiieeeiteeesteeeeeeeessveeesseessssesesssnessnsseeans 6
INTRODUCTION TO PROPERTIES, METHODS, AND EVENTScvvviiiiiiiiiieeeeeieee. 6
DEVICE INITIALIZATION AND FINALIZATION.......ccttiiiieeeiieeeiieeeiieeeveeeeveeeseneeens 7

TREHQLIZALION ... 7
FIRALIZALION ... 7
SUIMIATY ..ottt et)
DEVICE SHARING MODEL......ccceitiiiiiieesiieeeiteeeireeesteeessaeessneeesseesnssesessaeesnsseeans 9
EXCIUSTVE-USE DEVICES ... 10
SRAVADLE DEVICES ... 10
DATA TYPES ettt ettt e et e et e e st e e et e e st e e asebeessseeeanseaesnsaeeensseesnsseanns 11
EXCEPTIONScetteeitie ettt et e et e et e e st e e et e e setteeantbeessaeeesnseaasnsaeeensaeesnsseenns 12
ErrOrCOdecoeoeeeeeeeeeeeeeee e 13
ErrorCodeExtendedcccooeeeeoeieeiaiieeeeeeeee e 14
EVENTS ettt ettt e et e et e et e e s e saeesaseeeensseesnnsaeensseanns 15
RegiStering fOr EVENLScccoouieiieieeieeee ettt 17
EVERt DIIVEIY ...t 17
JavaPOS Event Registration Sequence Diagram..................cccccoeceeveeancenne.. 18
DEVICE INPUT MODEL.....cccttiiiiiieeiieeeiteesieeeeieeesereeeiteessaeessnseaessaessnsaeesnnseenns 19
Error Handling.............ccocoooiiiiiiiieeii e 20
MISCEIIANCOUS ... 21
DEVICE OUTPUT MODELSceetiieieiiteeiieesieeeeiteeseteeeereessseeessseesssaeesnssesssseenns 22
SYRCRTONOUS QUIPUL ..o 22
ASYRCHTONOUS OQUIPUL ...ttt 22
Error Handling..............cocoooiiiiiiiieiiieee e 23
MISCEIIANCOUS ... 23
DEVICE POWER REPORTING MODELceeiiiiiieiiieeiieeeiiieesieeesieeeeeaeeseneesneneeens 24
MOdEL. ... 24
PFOPEFTIOS ...t 25
Power Reporting Requirements for DeviceEnabledc..cccccocueuee.. 26
DEVICE INFORMATION REPORTING MODELcoeiiiiiieeiiieeeiieeciiee e eeiveeeeveens 27
Statistics Reporting Properties and Methods.................cc.ccccoovevcvioiencencnannn. 27
UPDATE FIRMWARE DEVICE MODELccoveiiiiieiiiieeiiieeciieeeieeesieeesneeeeeeee e 28
DEVICE STATES ..eietiieeiiteeiieeeieeeeite e eieeestteeestaeesesseeassseesnseesssseessnsaeesssseesnsseanns 29
THREADSetiieiiieeettee ettt e eiteeettee et e e sbaeesaseeeessaeessssaeansseessseeassseaesnseesansseesnsseanns 30
VERSION HANDLINGcccttiiiiiieiitieeeieeeieeesite e sttt esareeeeaeeesbeeennseeesnseeesnsseesnnsens 30
CLASSES AND INTERFACESccuttteeiiteeieeesiieeesieeesereeeereessseeassseesssaeesssessnsseenns 31
SYNOPSIS ..ottt eettee et ee ettt e etee e st e e ettt e s sseeasseeesseesasseeesnseeeansseesassaeeasseessnseeenses 31
APPIICALION ...t 31
Device CONLIOLcccoooeeeeeeeeeeeeeeeeeeeee e 32
DOVICE SEIVICE ...t 32
HeIPer CIASSES..........ccoieiiieeee ettt 33
SAMPLE CLASS AND INTERFACE HIERARCHIES.........cccoteeiitiieeririeeeieeenireeseneennene 34
Application SAMPIecoccooioiiiiiiiiiii e 34
Device Control Sample................cccccoviiieiiiaiiaiiiiet e 34
SCANMET ..o et e et ee e e e et e e e e eetrreeeeeeearaaeaeas 34
POSPIINEET ... e 35
Device Service SAmPlec.cccoooueviiieiiiiieieeee e 35
MY SCANNETSEIVICE” ...ueeieiieiierteeieeteeiie st esee st eeeste e sseeaesbeenee st eneeeneenes 35
MYPIINEISEIVICE™ ..ot 36
SAMPLE APPLICATION CODEcccuttieiiiieeieiieeieiieesieeeeireesseeeessseesesseeessseessnsneennses 37
PACKAGE STRUCTUREccccutiieiiieeiieesieeesieeeeieeesnaaeasseessssesessseassseeesssesssseenns 38

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents XV
JDOS e ettt ettt 39
JDOS.CVENES ...ttt ettt ettt 42
JDOS.SEIVICES ...ttt ettt ettt et 43

DEVICE CONTROLSeeeuttteitiieeiiteesieeesteeesteeeseseesssaeassseesssseesssseesssseesssssessnsseenns 46
DEVICE CONTROL RESPONSIBILITIEScceistiteeiieeeereeesereeeeseeesseeesseeessseesnsseenns 46
DEVICE SERVICE MANAGEMENTciiiitieeitieeeiteeeireeeereessseeesseessseessssesssseenns 47
Jjpos.config/loader (JCL) and JavaPOS Entry Registry (JER)c........... 47
jpos.config/loader (JCL) Characteristics............c.couucuaeeneeaoeeneaeeneiieseaienns 47
PROPERTY AND METHOD FORWARDINGcoveeiiiieiiieeeiiieeeieeesneeeeireesnneesneneens 50
EVENT HANDLINGotiitiie ittt ettt e et e et eesteeeesaeeennsaeensneaens 51
Event Listeners and Event Deliveryc.cccccocceuciioiniiiiieiiiieeeieeeeene 51
EVent CAllDACKSocceeeeeeeeeeeeeeeeeeee e 52
DEVICE CONTROL VERSION HANDLINGtvtieiiieeiieeeieeeeieeeeieeeeieeeeeaee e ns 53
DEVICE SERVICEScceiititeietieeeiiieestteestteesseeesseseesssaeassseessssesessseessssessssssessnsseenns 55
DEVICE SERVICE RESPONSIBILITIESuuvtteitreeesiteeeereeeereeesseeesseesssseesssessnsseenns 55
PROPERTY AND METHOD PROCESSING......cccvteiriiieriieeniieeesieeesireeesereeenseeensneaens 55
EVENT GENERATION......cctiiitiieeiiieertteesteeesteeeaereessseeasseessssesassseesssseessnssessnsseenns 56
PHYSICAL DEVICE ACCESS....cccttieieiieeeiieesieeeeiteesiteeeireessseessseessssaeesnsseesnsseenns 57
API MAPPING RULES ...ttt ettt ettt e e e 57
JAVAPOS COMPONENT DESCRIPTIONScccctvieereiieeireeesereesaeeeesseeesseeesnseesnsseenns 58
SECTION 1: JAVAPOS DATA TYPESootiiiiiieiiieeeiieeeteeeeeeestee e eeeaeeseeeesevee e 59
DATA TYPES......voiiiiiieieeee et 59
SECTION 2: JAVAPOS INTERFACE DESCRIPTIONS......ccuvttiitiieenirieeeireesereenereeenens 60
JAVAPOS COMMON PROPERTIES, METHODS, AND EVENTScccooviiiiiiieinnne. 61
COMMON PFOPEFTIES......c..eeeeiiiiieet et 61
JAVAPOS ClASS NAMEScc.eeeeeeeeeeeeeee e 63
PFOPEFTIOS ... 64
MEUIOCS ... 73
EVONLS ..o 83
PERIPHERAL INTERFACESoeiiiiieeeiieeeiieesiteeeieeeseseeesreesssseeesnseessnsaeesssesssseanns 88
JAVAPOS: CASH DRAWERcccuviiiiiiieiiieesiieeeieeesiteeenereessseeesseesssaeessseesnsseenns 89
Java Command EXQMPIESc.cccooiiiiiioiiiiiiieieee e 89
Initializing Properties, Methods, and EVentscccccccoovevvmiciacienenanane. 89
Capabilities, Assignments & Descriptions Properties, Methods,and Events .. 89
Cash Drawer Operations Properties, Methods, and Events.......................... 90
Cash Drawer Terminating Methods.................cccccoociiiieeiiioienceiieeieee e 90
JAVAPOS: MICR ... 91
Java Command EXQMPIEScoccoiieiiioiiiiiieit it 91
Initializing Properties, Methods, and EVentsccccccoevvencincienennnane. 9]
Capabilities, Assignments & Descriptions Properties,Methods,and Events .. 91
MICR Operations Properties, Methods, and EVents................ccccocceveenenn.. 93
MICR Terminating Methods................c..cocoiioieiiiieniiiee e 93
SECTION 3: TECHNICAL DETAILS ...ceeectiiieiiieecitieeniteeeieeesteeeesesaesenseeessseeessneeennns 94
OPOS to JavaPOS - API Mapping Rules..............cccccooeviviieiiiiaiiiieeene. 94
Data TYPES .ttt st st 94
Property and Method Namescocveeeririenieieseeeee e 95
EVEONLS e 95
CONSLANTS ...vviiieeeeiiiee et ceet e e e e e e et e e e e eeatteeeeeeeaabeeeeeeensaaeeaeeans 95

APTI DEVIALIONS ..ot 96
Mapping of CRAFACIEFSetcccoeieiiieiii et 97
SECTION 4: JAVAPOS CHANGE HISTORYcocviiiiiiiieiiieeiiieeriiieeeieeesieeeeeeee e 98

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

Xvi Table of Contents
ReICASE 1.3 ..o 98
REICASE 1.4 ... 99
ReLCASE 1.5 ... 100
ReICASE 1.6 ... 102
ReLCASE 1.7 ... 104

APPENDIX C
POS FOR .NET IMPLEMENTATION REFERENCE 1
WHAT IS “POS FOR INET?” ..ttt ettt st 1
WHO SHOULD READ THIS SECTIONcutiiiiiiieiiieniieeieesiteeieeite e esiee st sieesane e 2
OVERVIEW OF POS FOR .NET ..ottt 2
POS FOR .NET DEFINITIONSceittiriteeiteniiesteeieesiteeieesieessteenteesseesseesaseenseesnesnne 4
DEVICE CLASS ... 4
Service ObJect OF SOccccciiiiiiiiiiiiiiieieetet s 4
KEY POS FOR .NET FEATURES.......ccocttitiiiiiiieeite ettt sttt 4
.NET Interfaces for POS Peripherals.............c..cccccoccroineniinincniiiiiiiiinennns 4
Base Classes for Service ODBJEctSoouvevieivcioiioiiiiiiiiinieeieeeeeeee, 4
Basic Classes for Service ODBJEctscccouroiuiniiniinieniiiniieieiececeeie e 4
Device Category SUpport Level.................ccccucuoiiieinininiiiiieiaiscsc e 5
Plug and PLaycccoooiiiiiiiiiiiiiciitit et 6
Standardized Setup.................ccocociviiiiiiiiiiiii e 6
Device ENUMEIALIONc.c......occeeeeeeeeeeeee e eeeieee et 6
Software-Based Device SIALSHICScoccoeriveoieoiciiiaiiineneeeeeees 6
Support for OPOS (COM-Based) Service Objects..............ccoccevceaceeneaveennnnnn. 6
Service Object Verification PrOGram..............c.cccuccveeeecnieoieonioiiiaincnenenes 7
KEY PROGRAMMING CONSTRUCT DIFFERENCES FROM OPOSccccovviiiiiiiine 7
NaAMing CONVERLIONScccoueecuiriiciiiiiiiiiii ettt ettt 7
ERUMEIATIONS ...ttt 7
STPUCTUTES ..ot 25
CashCouNt STIUCTUTE........ccoveeeuiierieiie ettt e e re v seneeeree e 25
CashCounts StrUCTUIEccveeeuiiirieiiecii ettt eve e 25
CashUNItS STIUCLUTEc.vievieeiieerieiie ettt et eveesane v 26
DirectlOData StIUCLUIE.........ccveiiuiieiieetie ettt eere e eveeeree e 26
FiscalDataltem StruCturecccveevveeeiieerieeiieeie ettt 26
TotalsFileInfo StruCture........ccviiviiiuieiiiiieceeece et 27
VatInfo StrUCUTEcveiviiiieciicceecee et et 27
VideoOMOde StIUCTUIEeovveeeiieiiieiieeieceiee ettt et eeve et e eeveeean s 28
Complete Class Libraries Providedc.ccccocevieciiniavieneieinieaeenns 28
REtUIIL VAIUES ... 29
REIUFTIING PFOPEITIES ...ttt 29
REIUFTIIIG LISTS ..ottt et 29
KEY PARAMETER DIFFERENCESccctertietienierieenieenieenieestesseessneesessseessesnseens 31
KEY PROPERTY SIGNATURE DIFFERENCESccccuvertvenieeniienieeieeneeeieenieesveenseens 32
MORE INFORMATIONccutiiiiieiieniieenieeniteeteesieeseteenseessseenseesssesnseesssesnsessseessesnseens 32
POSEXPLORER APL......oiiiiiiiiiiieiieeteee ettt ettt sttt et 33
POSEXDIOTEr PrOPEFTIES ...ttt 33
POSEXPIOTer MEtROAScccoooouieiiieiiieee et 34
POSEXDIOTEF EVEILS ...ttt 36
GloDAl CONFIGUFALION ... 37
SERVICE OBJECT REGISTRYeevuvieiienirieiieniesieenteeteensaeeseesseesnseenseessseesseesssesnne 37
CONSUMING SERVICE OBJECTScveeitienuieetieneeeteenieenieesieessesseessesssessseesssesnseens 37

UnifiedPOS Version 1.11 -- Released January 15, 2007

Table of Contents Xvii

OPOS ... e 37
POS OF INET ...ttt 38
WRITING SERVICE OBJIECTS ..ccuvvieeiiiieeieeeseeeeeeeeeseseeessseesssesesseessssesessssessnsseenns 38
POS OF INET ...t 38
STATUS, STATE MODEL, AND EXCEPTIONS.......cociiiiiiiiieeeeiiieeeeeeeiireeeeeeirveee e 39
StAtusUPAALEEVENLTccuoeiiieiiieee et 39
CONIFOLSTALE ... 39
EXCOPIONS ..o 39
DEVICE SHARING MODEL......cccuttiiiiiteeiieesiieeesiieesiteeeereeesaeeesseesssaeessssessnsseenns 41
EXCIUSTVE-USE DEVICESoceeeeeeeeeeeee e 41
SRAVADLE DEVICES ... 41
EVENTS ettt ettt et e et e e e be e et e e e e nsaeesnseeeensseeennsaeensseanns 42
INPUT MODELcoiiiiiieeiite ettt ettt et e e e e s tteeeneteesnaeeesnseaesnsaeeensseesnsseanns 43
OUTPUT MODELctiieiiiieeiieeeieeeeiteeeite e st e e eeeeeseetaeessseesssseeesnseassnsaessnsseesnsseanns 45
SYRCRTONOUS QUIPUL ... 45
ASYRCHTONOUS QUIPUL ...ttt 45
DEVICE POWER REPORTING MODELceeiiiiieeiiieeiieeeirieesteeeseeeeeeeeesnneesneneeens 46
MOdEL. ... 46
POWER REPORTING PROPERTIEScceeiciiieiiiieeiieeeireeeireeeseeeesneeessaeesnneesnnseenns 47
Power Reporting Requirements for DeviceEnabledccccccccvue.. 48
DEVICE INFORMATION REPORTING MODELccoiiiiiieeiiieeeieeeeiieeeieeeeieeeeeveens 48
Statistics Reporting Properties and Methods..................c.ccccoovevcvioiancencnnnnn. 49
POS FOR .NET COMPONENT DESCRIPTIONS.......ccceiveeeririeenreeesreeeaseeessnseeseneanns 50
POS for NET DAt TYDES ..ot 50
POS for .NET Common Properties, Methods, Events,Statistics,& Constants . 51
COmMMON PrOPEItIesccueeueiieieieieieieiiieieeie ettt 51
Common MethOdSooouviiieiiieee e 52
CommON EVENLSoocoiiiiiiiiieciiee et 52
COoMMON SEAISTICS ...ecuveeeeeieeieiieeeeeeeeeteeeetee et e et eeaee e et e et eeeareeeenneas 53
CommOn CONSTANESccvvieiieeiiiiieececciiee e ettt eeeeiee e e e eeetrreeeeeearaeeeeeeaes 53
COMMON PROPERTIESceccutieeiiieeriiteesieeesteeeesereesnseeasseesssseesssseessseesssssessnsseenns 54
COMMON METHODSuttieiiiieeiiieesiteeeiteeesteeesseeeessseeasseesssseeessseessseeesssessnsseenns 61
COMMON EVENTS.....oiiiiiiiiiieeieeeiteeeiee e sttt e e e e e tteeetbe e e teeesnseesssaeeensseesnsseenns 74
POS FOR .NET VS. UNIFIEDPOS MEMBERScccecitieiiieeeieeeeieeeeireeeeneeseneens 75
INTERIM PROCEDURE AVAILABLE FOR LEGACY OPOS SERVICES...
SHIM CODE USAGE 76
ARCHITECTURE STRUCTUREScccuttirtieruiietientesteenieeneeesseessesseesssesssessseessesnseens 77
METHOD OF IMPLEMENTATIONouuuiiiiiiiiiiiiieiiiiiieeeeeeeeeeeeeeeeasannneeeeeeseeseesssnnnnnns 78
Shim Code NAMING FULESc..cc.cceeiieeiiiiiesiieieeieeieeie et 78
Shim Method Redefinition RUIEScccccoeeveviiiieieiiaieeieieeeeee e 79
Shim Code Rules For In/Out Parameterscccccoeveeeveeeeeeieeaeneenns. 79
METHOD OF ADMINISTRATIONuteruienuieeteenieesteenteeneeenseeseesseesseessesssesssesnseens 80
SHIM CODE FILE NAMESeecttiiiieiienitieiteniteeieesiteeteesiaessseesseesaseesseessseenseesssesnne 80
SRIMJIIE LISt ...ttt 81
CLASS DIAGRAMS....coeutieiieiteettecte et siteebtesite st esteesateesbeessaesabeessnesssesseesnseenseens 82
TNEEHSACE CLASS ... 82
BASIC CLASS ..o 82
SPIIM CLASS ... 83
SCIVICE CLASS ... 83

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

xviii Table of Contents
APPENDIX D
CHANGE HISTORY 1
RELEASE VERSION 1.4 .. ittt ettt sttt sttt s 1
RELEASE VERSION 1.5 ittt sttt et ettt st 1
RELEASE VERSTION 1.0..ccuuiiiiiiiiiiiieeiieet ettt sttt ettt s 3
RELEASE VERSION 1.7 ..ttt ettt sttt sttt sttt 5
RELEASE VERSTION 1.8ttt ettt ettt ettt 11
RELEASE VERSION 1.9ttt 14
RELEASE VERSION 1,10 .0ttt ettt ettt 16
RELEASE VERSION 1.1 1 ittt 19
APPENDIX E
ADDITIONAL SOFTWARE REFERENCES 1
UML REFERENCGES ...covvviiiiiiiieeie e e eeeeeeeeaaaeee e eeeeeeeeeeeeeeeseseeeensssssssssssnnernreeees 1
Web LOCAIION REFEFEIICESc.oeeveesiieaieeiiiesiieeieesiie e esiee et esiaeeve e e s 1
Reading Material Referencesccccoccuueiaveiiianeiiieeeeesieee e 1
APPENDIX F
ADDITIONAL HARDWARE REFERENCES 1
USB PLUSPOWER CONNECTORccecuvtiiiiireririeeaireessreeesereesnsesessseessseeessssessnsseeans 1
OVEIVEICW ..ottt e et et e et e e e e et e e e e e 1
HoSt Side CONNECION ... 1
CADIC ... 2
Peripheral Side CORNECTIONc..coooeieiiiiiiiieii e 2
Web Location References - USB connector EIA approval............................... 2
Reading Material Referencescocouuoiioeiiaiiaiiiene e 3
ARTS Standard Endorsementcccccooeeeeeecieeeeeieeeeieeeeeeeeeeeeeeeea 3
APPENDIX G
DEPRECATION HISTORY 1

UnifiedPOS Version 1.11 -- Released January 15, 2007

INTRODUCTION AND ARCHITECTURE

UnifiedPOS Architecture for Retail

What Is UnifiedPOS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural
specification for application interfaces to point-of-service devices that are used in
the retail environment. This standard is both operating system independent and
language neutral and defines:

* An architecture for application interface to retail devices.

* A setof retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

* The UnifiedPOS Retail Peripheral Architecture overview.

» Text descriptions of the interface to the functions of the device.

* UML terminology and diagrams for each device category, to describe:
* Relationships between classes/interfaces and objects in the system.

* Basis for creating C++, Java, IDL, or other OO technology to implement the
UML design.

* Operational characteristics and details for implementations which are
compliant to the UnifiedPOS architecture. These were added in Appendices A
and B for UnifiedPOS Version 1.6.

The UnifiedPOS standard will not include:

* Specific language API specifications.

* Complete software components. Hardware providers, software providers, or
third-party providers develop and distribute these components.

e Certification mechanism; this must be handled by individual language
standard committees (such as the OLE for Retail POS (OPOS), POS for .NET,
and Java for Retail POS (JavaPOS) committees).

24

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Since the release of UnifiedPOS Version 1.4, the retail standards committees have
been maintaining three separate standard documents, UnifiedPOS, JavaPOS and
OPOS. The architecture and device characteristics are identical in each of these
documents. The addition of new device categories and/or enhancements to
existing chapters requires consultation and agreement on the technical content for
the standard. However, in addition to that technical work, there is a heavy
administrative burden in generating the correct documentation for three different
versions of the specification. The current documentation situation is inherently
error prone in that the same changes have to be maintained in multiple
documents. Confusion is generated in cases where differences have inadvertently
appeared in the documentation. In order to simplify the process and bring a higher
quality of review to ongoing modifications of the documentation, the standard
committee is releasing a consolidated UnifiedPOS specification. Beginning with
UnifiedPOS Version 1.6, this specification includes the description of all device
categories plus the minor delta information for each of the specific existing
implementations, currently JavaPOS and OPOS.

Appendix A includes the definition, goals, and deliverables for OPOS. There are
explanations for the input/output and device sharing for Microsoft’s COM model
for the operation of the interface. Event and error handling unique to this
implementation are described.

Appendix B includes the definition, goals, and deliverables for JavaPOS. There
are explanations for the input/output and device sharing for the Java model for the
operation of the interface. Event and error handling unique to this implementation
are described.

Appendix C includes the definition, goals, and deliverables for POS for .NET.
There are explanations for the input/output and device sharing for Microsoft’s
.NET model for the operation of the interface. Event and error handling unique to
this implementation are described.

UnifiedPOS Version 1.11 -- Released January 15, 2007

What Is UnifiedPOS?: Goals 25

Goals
The goals of UnifiedPOS are to provide:
¢ Common device architecture that is international and extends across vendors,
platforms, and retail format.
« Standards for application to device interfaces in an operating system
independent and language neutral manner.
* Reduced implementation costs for vendors to support multiple (for example,
Windows/COM, Windows/.NET, and Java) platforms because they share the
same architecture. This should produce speed to market for innovation.
* An environment avoiding competition between standards while encouraging
competition among implementations.
Dependencies

Success of the goals of UnifiedPOS depends upon platform specific standard
committees (such as JavaPOS and OLE for Retail POS (OPOS) technical
committees) to advance the architecture into platform specific documentation,
API definitions and implementations.

The specific technical implementations require:

« Platform specific implementation references. (See Appendices A, B, & C.)
e Source files, including:

¢ Definition files. Various interface and class files described in the
standard.

« Example files. These will include a set of sample Control classes, to
illustrate the interface presented to an application.

UnifiedPOS Relationship to OPOS and JavaPOS

The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by the JavaPOS, OPOS, and POS for .NET standards,
in an operating system independent and language neutral manner. The first
release of the UnifiedPOS Specification was Version 1.4.

The JavaPOS, OPOS, and POS for .NET standards have been established as
conformant platform mappings of the UnifiedPOS specification. In UnifiedPOS
Version 1.6, appendices were added in order to document specific implementation
details for each of these platforms. JavaPOS will be recognized as the only
UnifiedPOS conformant, operating system neutral, Java language mapping (See
Appendix B). OPOS will be recognized as the only UnifiedPOS conformant
language neutral COM mapping (See Appendix A). POS for .NET will be
recognized as the only UnifiedPOS conformant language neutral NET mapping
(See Appendix C). Future UnifiedPOS mappings to platforms other than Java,
COM, and .NET will be included as appendices to the UnifiedPOS specification
as they become available.

UnifiedPOS Version 1.11 -- Released January 15, 2007

26

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

This acceptance of the existing standards is based on their close conformance to a
common design model. Historically, the OPOS standards provided device
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

* Similar purposes. Both standards involved developing device interfaces for
a segment of the software community.

* Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

* Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write
their code in conformance with one or both of the JavaPOS or OPOS standards.
The content of the UnifiedPOS specification, however, along with the appropriate
Appendix, will constitute the definition of how an application can be developed
to meet the UnifiedPOS standard. The standards committees do not intend to
release future versions of the specific OPOS and JavaPOS documents after the
Version 1.6 specification.

The UnifiedPOS specification is also the basis for the POS for .NET
implementation, which similarly adheres to this common approach for the access
and control of POS peripherals.

Who Should Read This Document

The UnifiedPOS Architecture is targeted to the standard committees that will
provide the language specific mapping and Programmer’s Guides. However, the
application developer who will use POS devices, the system developer who will
write POS device code, and the suppliers of POS devices for retail may be
interested in the device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the
following:

* General characteristics of POS peripheral devices.

* UnifiedPOS terminology and architecture.

* UML for reading the design.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Architectural Overview: Architectural Components 27

Architectural Overview

UnifiedPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the UnifiedPOS Control
layer.

POS Application

UnifiedPOS Device

y
UnifiedPOS Control

¢

UnifiedPOS Service

Y
Physical (or logical) Device

Architectural Components

The POS Application (or Application) is an Application that uses one or more
UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such
as Cash Drawer and POS Printer.

Each UnifiedPOS Device is a combination of these components:

* Control for a device category. The Control class provides the interface
between the Application and the device category. It contains no graphical
component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device
category’s control will be compatible. Therefore, the Control can be
developed independently of the Service for the same device category (they
can even be developed by different companies).

UnifiedPOS Version 1.11 -- Released January 15, 2007

28

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Use of UML

* Service, which is a component called by the Control through the Service
Interface. The Service is used by the Control to implement UnifiedPOS-
prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with
multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the platform specific APIs which conform to the
UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and
some Bar Code Scanners include an integrated Scale. However with UnifiedPOS,
an application treats each of these device categories as if it were an independent
Physical Device. The UnifiedPOS Device standard developer is responsible for
presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

The UnifiedPOS standard includes the use of UML terminology and diagrams to
define device categories. Following is a brief description of the extensions to
UML to make it better fit the UnifiedPOS architecture (this extension is expected
and allowed by the UML, see Booch98 reference in the “UML References” on
page D-1).

Should any discrepancies exist between the UML diagrams and the specification
text, then the text takes precedence.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Architectural Overview: Use of UML

29

Table of extensions to UML for UnifiedPOS.

Name

Applies to UML
Symbol

Meaning

<<capability>>

Class attribute

stereotype which flags the attribute as a
UnifiedPOS capability

<<pr0p>>

Class attribute

stereotype which flags the attribute as a
UnifiedPOS property

<<event>>

Class

stereotype to indicate that the class/interface
will be mapped to a UnifiedPOS event which in
turn is mapped to a JavaPOS event class or a
COM event for OPOS or a .NET event

exclusive-use

Class

constraint that indicates this Device Service or
Service Object follows the exclusive-use
behavior defined in the UnifiedPOS
documentation in section “Exclusive-Use
Devices” on page 38.

sharable

Class

constraint that indicates this Device Service or
Service Object follows the sharable behavior
defined in the UnifiedPOS documentation in
section “Sharable Devices” on page 38.

read-only

read-write

Class attribute

constraint that indicates the mutability of the
attribute. For example, in JavaPOS, read-only
attributes translate to having a getter method for
the attribute and read-write attributes have getter
and setter methods for attributes.

access after
<open>|
<open-claim>|
<open-enable>|

<open-claim-enable>

Class attribute

constraint that indicates this attribute is
accessible when the service is in the state
indicated. For example {access after opened-
claim-enable} indicates that the attribute is
accessible when the service has been opened,
claimed and enabled in the order indicated.

raises-exception

Class operation

constraint that indicates this method can throw
an exception if the implementation language
supports exception; otherwise, some mechanism
is used to notify the application that an invalid
condition occurred. A value is returned to
indicate the error.

use after

<open>|
<open-claim>|
<open-enable>|

<open-claim-enable>

Class operation

constraint that indicates this operation is
accessible when the service is in the state
indicated. For example {use after open-claim-
enable} indicates that the method is accessible
when the service has been opened, claimed and
enabled in the order indicated.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
30 Introduction and Architecture

Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

]]

upos events

(from upos)

Note: This package diagram is included to give some logical structure to the
interfaces in the UnifiedPOS interfaces UML diagrams. Some implementations
may have a corresponding equivalence for the packages and some may not. Also,
note that the name ‘upos’ may be replaced by an implementation specific prefix
(eg. JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

UnifiedPOS Version 1.11 -- Released January 15, 2007

Architectural Overview: Data Types

31

Data Types

Updated in Release 1.11

UnifiedPOS uses textual references to data types which will be defined for
specific language usage:

POS for

UnifiedPOS JavaPOS OPOS NET UML UnifiedPOS text Usage

boolean boolean BOOL bool i boolean Boolean true or false.

boolean by ~ boolean[1] BOOL* Not used ** inout Mutable boolean.

reference boolean

binary byte[] BSTR byte[] in binary ~ Immutable array of bytes.

binary by byte[1][] BSTR* Not used ** inout Mutable array of bytes. (Both its size

reference binary and contents may be modified.)

array of byte[][] SAFEARRAY Notused ** in binary/] Immutable array of array of bytes.

binary of BSTR

byte byte LONG byte in byte 8-bit integer. (See HardTotals, setAll
method.)

int32 int LONG int or enum in int32 32-bit integer.

int32 array int[] SAFEARRAY int[] in int32 Array of 32-bit integers.

of LONG array

int32 array int[1][] SAFEARRAY* Not used ** inoutint32 Mutable array of 32-bit integers. (Both

by reference of LONG array its size and contents may be modified.)

int32 by int[1] LONG* Not used ** inout int32 Mutable 32-bit integer.

reference

currency long CURRENCY decimal in 64-bit integer. Sometimes used for

or CY currency currency values where 4 decimal

places are implied. E.g., if the integer
is “1234567”, then the currency value
is ©“123.4567”. See footnote?

currency by long[1] CURRENCY* Notused ** inout Mutable 64-bit integer.

reference or CY* currency

String String BSTR string in string Text character string.

string by String[1] ~ BSTR* Not used ** inout Mutable text character string. (Both its

reference string size and contents may be modified.)

array of Point[] BSTR Point[] inout Immutable array of points. Used by

points point[] Signature Capture.

object Object BSTR* object inout An object. This will usually be

object subclassed to provide a Service-

specific parameter.

nls String LONG Culturelnfo in nls Operating System National Language

Support data type.

a. S1x decimal place precision 1s required tor all computations in conversion between currencies but 1s not
required for the representation of the solution.

For Java:

The convention of type[1] (an array of size 1) is used to pass a mutable basic type. This is required since Java’s
primitive types, such as int and boolean, are passed by value, and its primitive wrapper types, such as Integer and
Boolean, do not support modification. For strings and arrays, do not use a null value to report no information.

Instead use an empty string (

(IzH)

) or an empty array (zero length). In some chapters, an integer may contain a “bit-

wise mask”. That is, the integer data may be interpreted one or more bits at a time. The individual bits are

numbered beginning with Bit 0 as the least significant bit.

** POS for .NET does not use “out” parameters, return values are used instead.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
32 Introduction and Architecture

Device Behavior Models

Introduction to Properties, Methods, and Events
An application accesses a POS Device via platform specific APIs.
The three elements of UnifiedPOS standard for APIs are:

* Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or string. An application may
retrieve a property’s value, and it may set a writable property’s value.

* Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

* Events. A Device implementation may call back into the application via
events. The application may need to register for events. The mechanism to do
this is implementation specific.

Properties (UML Attributes)

Note: For each interface a UML listing of the properties and methods of the
interface will be included in a table. The properties are indicated as attributes.
The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }
where:

visibility in this document is always public for application visible interfaces but is
not explicitly shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types
defined in section “Data Types” on page 31.

defauh‘-value1 the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define
two such strings: read-only and read-write, which indicates the mutability of the
attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

I Not used by UnifiedPOS standard

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Introduction to Properties, Methods, and Events 33

Methods (UML Operations)

The generic UML pattern for methods is the following:
visibility name (parameter-list): return-type-expr { property string }
where:

parameter - list is a comma separated list of formal parameters using the
following generic UML naming pattern:

kind name: type-expression (= default—value)2
where:

kind is either: ‘in’, ‘out’, or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an
additional property string called ‘raises-exception’ is defined which means that
this method can throw the exception if the implementation language supports
exception; otherwise, some mechanism is used to notify the application that an
invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)

Events are being modeled as UML classes which will possibly contain attributes
stereotyped with the event stereotype. The generic UML pattern for events is a
UML box with the stereotype <<event>> (class diagram) with the event name
and a list of the properties. This representation is different from Properties and

Methods.
<< event >>
XxxEvent
where:
XxxEvent stands for the UnifiedPOS event name and the second

compartment of the box would contain a list of attributes for the event.

2. default-value is not used by the UnifiedPOS standard

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
34 Introduction and Architecture

Device Initialization and Finalization Updated in Release 1.11

Initialization

The first actions that an application must take to use a Device are:

e Obtain a reference to a Control,

* Prepare Control for the events that the application needs to receive, if
necessary.

To initiate activity with the Physical Device, an application calls the Control’s
open method:

The logicalDeviceName parameter specifies a logical device to associate with the
Device. The open method performs the following steps:

* Creates and initializes an instance of the proper Service class for the specified
name.

+ Initializes many of the properties, including the descriptions and version
numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same
time. Therefore, after the Device is opened, an application might need to call the
claim method to gain exclusive access to it. Claiming the Device ensures that
other Control instances do not interfere with the use of the Device. An application
can release the Device to share it with another Control instance— for example, at
the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner Device is disabled, the Physical Device will
be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the Device is enabled.

Initialization and Error Reporting Added in Release 1.11

Error conditions may require that a Service fail during one or more of the
initialization APIs - open, claim, and/or DeviceEnabled=true. The following are
recommendations for initialization-time error handling by Service implementers.
These guidelines are not mandated, however, because of the wide variation in
some hardware devices and their initialization requirements, and due to variations
in already released Services.

open Primary purpose: Initialize the software stack, including the creation of
the Service and initialization of its supporting software components.

1) The Service must fail an open API call if software initialization fails.

Example: Supporting software components are not installed or
available, so fail the API call.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Initialization and Finalization 35

2)

3)

If the Service must probe the device in order to correctly set open-
time properties (such as capabilities), then the Service should fail an
open API call if it cannot access the device.

Example: A Service supports several line display models and sets
the UnifiedPOS capabilities after communicating with the device. If
the device’s port is not available or the device does not respond, then
the Service cannot complete its open work and will need to fail the
API call.

For other cases, the Service should succeed the open API call and
report a failure (if needed) later.

Example: A Service cannot open an RS232 port during open.If the
previous case (#2) above does not apply, then the Service should
succeed the open and report the port open failure during claim, if the
port is still not available.

claim Primary purpose: Acquire exclusive access to the device, for exclusive-
use devices.

1)

2)

3)

The Service must fail a claim API call if another process has claimed
the device and the claim timeout expires.

If the device is not accessible, then the Service should fail a claim
API call.

Examples: A required communications or I/O port cannot be opened
or claimed. The Service determines that the device is not present or
is offline. For each of these cases, the Service should fail the API
call.

For other cases, the Service should succeed the claim API call. This
specifically includes cases where runtime faults exist.

Examples: A POSPrinter receipt station is out-of-paper, or the
POSPrinter receipt station detects a printer jam. These are runtime
faults that occur from time to time during operation, and are user
correctable. The Service should succeed the claim. POSPrinter
runtime faults should be reported (after DeviceEnabled=true) by
StatusUpdateEvents and by exceptions from APIs such as
printNormal.

DeviceEnabled=true Primary purpose: Final preparation for operation and

1)

2)

application use.

If the device is not accessible, then the Service should fail a
DeviceEnabled= true API call. (Note that the device may have been
accessible at claim but is now inaccessible.)

Example: The Service determines that the device is not present or is
offline, so the Service should fail the API call.

For other cases, the Service should succeed the DeviceEnabled=true
API call. This specifically includes cases where runtime faults exist.

Examples: See claim case (#3) above.

UnifiedPOS Version 1.11 -- Released January 15, 2007

36

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

An application developer must be prepared for failures at any of the initialization
points. With the variations in hardware devices and in their Service
implementations, a well-written application will respond predictably to the widest
range of error conditions and their reporting as possible.

Retail devices may communicate with a POS terminal using a wide variety of
ports, including RS232, RS485, Parallel, USB, Ethernet, and Wireless. In
addition, devices may be powered directly by the terminal or by an external
power source. These guidelines may be applied to all of these devices. Two
examples with typical initialization follow.

Example 1: Hand-held scanner attached to a terminal's powered RS232 port.
» open: Succeed if software initialization is successful.

« claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

» DeviceEnabled=true: Succeed if claim was successful and if an attempt
to communicate with the device is successful.

« While enabled: If the device is unplugged from the powered RS232 port,
then detect the power state change and report to the application. If the device
is later plugged back in, then detect the power state change and report to the
application. For many devices, power state changes can be accomplished by
monitoring the RS232 DSR signal. (Note that hot unplugging and plugging in
with this port type is probably not recommended by the hardware vendor.)

Example 2: Deck scanner/scale attached to a terminal's USB port, powered by a
“brick”.

» open: Succeed if software initialization is successful.

+ claim: Succeed if open was successful and if an attempt to communicate with
the device is successful.

» DeviceEnabled=true: Succeed if claim was successful and if an attempt to
communicate with the device is successful.

» While enabled: If the device is unplugged from the USB port or from its
power source, then detect the power state change and report to the application.
If the device is later plugged back in, then detect the power state change and
report to the application. An operating system-specific mechanism detects
power state changes, such as an open, write, or read failure with specific
failure statuses.

Notice that the general initialization handling is very similar, even though the
second example will typically require somewhat more logic within the Service to
monitor and re-initialize the device connection.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Initialization and Finalization 37

Finalization

After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device
resources in a timely manner.

Summary

In general, an application follows this general sequence to open, use, and close a
Device:

Obtain a Control reference.
Prepare for events if necessary.
Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical
Device. Required for exclusive-use Devices; optional for some
sharable Devices. (See “Device Sharing Model” on page 38 for more
information).

Set the DeviceEnabled property to true to make the Physical
Device operational. (For sharable Devices, the Device may be
enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical
Device.

Call the release method to release exclusive access to the Physical
Device.

Call the close method to unlink the Service from the Control.
Release events receipt if necessary

Remove the reference to the Control

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
38 Introduction and Architecture

Device Sharing Model

Devices fall into two sharing categories:

* Devices that are to be used exclusively by one Control instance.

* Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time.
However, activities that an application can perform with a Control may be
restricted to the Control instance that has claimed access to the Physical Device.

Exclusive-Use Devices

The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Control at a time. An application must call the
Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a failure condition to
occur.

An application may in effect share an exclusive-use device by calling the
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices

Some devices are sharable devices. An example is the keylock. A sharable
device allows multiple Control instances to call its methods and access its
properties. Also, it may deliver its events to multiple Controls. A sharable device
may still limit access to some methods or properties to the Control that has
claimed it, or it may deliver some events only to the Control that has claimed it.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Events 39

Events

UnifiedPOS architecture uses events to inform the application of various
activities or changes with the Device. The five event types follow.

Supported When A
Event Class Description Device Category
Supports...
DataEvent Input data has been placed into device Event-driven input
class-category properties.
ErrorEvent An error has occurred during event- Event-driven input
driven input or asynchronous output. -0r-
Asynchronous
output
OutputCompleteEvent An asynchronous output has Asynchronous
successfully completed. output
StatusUpdateEvent A change in the Physical Device’s Status change
status has occurred. notification
Devices may be able to report device
power state. See “Device Power
Reporting Model” on page 46.
DirectlOEvent This event may be defined by a Service ~ Always, for Service-
provider for purposes not covered by specific use

the specification.

The Service must enqueue these events on an internally created and managed
queue. All events are delivered in a first-in, first-out manner. (The only exception
is that a special input error event is delivered early if some data events are also
enqueued. See “Device Input Model” on page 42.) Events are delivered by an
internally created and managed Service thread. The Service causes event delivery
by calling an event firing callback method in the Control, which then delivers the
event to the application.

The following conditions cause event delivery to be delayed until the condition is

corrected:

* The application has set the property FreezeEvents to true.

* The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page 42.)

Rules for event queue management are:

e The Device may only enqueue new events while the Device is enabled.

* The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

* For input devices, the clearInput method clears data and input error events.

* For output devices, the clearOutput method clears data and output error
events.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

40

Introduction and Architecture

Errors

UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods
(UML Operations)” on page 33 and explanation of exceptions:

* Errors that are “invalid or bad invocations” which are recognized by the
Service validation of the request. Method invocations and property accesses
may be valid or invalid. If the action is invalid, an invalid condition is set and
the application is notified in a fashion appropriate to the platform. For specific
implementations, OPOS would produce a ResultCode other than
OPOS_SUCCESS and JavaPOS would produce an exception.

» Errors that are caused by errant device behavior and produce error events.

Error Codes

Updated in Release 1.11

This section lists the general meanings of the error code property when an invalid
condition occurs. In general, the property and method descriptions in later
chapters list error codes only when specific details or information are added to
these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value

Meaning

E CLOSED
E CLAIMED

E_NOTCLAIMED

E_NOSERVICE

E_DISABLED

E ILLEGAL

An attempt was made to access a closed Device.

An attempt was made to access a Physical Device that
is claimed by another Control instance. The other
Control must release the Physical Device before this
access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.

If the Physical Device is already claimed by another
Control instance, then the status E_ CLAIMED is
returned instead.

The Control cannot communicate with the Service,
normally because of a setup or configuration error.

Cannot perform this operation while the Device is
disabled.

An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Error Codes

41

E NOHARDWARE

E_OFFLINE
E_NOEXIST
E_EXISTS

E FAILURE

E TIMEOUT

E BUSY

E EXTENDED

E DEPRECATED

The Physical Device is not connected to the system or
is not powered on.

The Physical Device is off-line.
The file name (or other specified value) does not exist.
The file name (or other specified value) already exists.

The Device cannot perform the requested procedure,
even though the Physical Device is connected to the
system, powered on, and on-line.

The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

The current Service state does not allow this request.
For example, if asynchronous output is in progress,
certain methods may not be allowed.

A device category-specific error condition occurred.
The error condition code is held in an extended error
code.

The requested operation can not be performed since it
has been deprecated. See “Deprecation Handling” on
page 57 for additional information.

When more than one error code is valid, the most descriptive code should be
selected. For example, the closed, claimed, not claimed, and disabled errors must
follow this order of error reporting precedence, from higher to lower:

E_CLOSED
E_CLAIMED

E NOTCLAIMED

The device must be opened.

The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E _DISABLED The device is opened and claimed (if this is an exclusive-
use device), but not enabled.
Extended Error Code

The extended error code is set as follows:

e When the error code is E EXTENDED, the extended error code is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

* When the error code is any other value, the extended error code may be set by
the Service to any Service-specific value. These values are only meaningful if
an application adds Service-specific code to handle them.

UnifiedPOS Version 1.11 -- Released January 15, 2007

42

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Device Input Model

The standard UnifiedPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application.

If the AutoDisable property is true when data is received, then the Device will
automatically disable itself, setting DeviceEnabled to false. This will inhibit the
Device from enqueuing further input and, when possible, physically disable the
device.

When the application is ready to receive input from the Device, it sets the
DataEventEnabled property to true. Then, when input is received (usually as a
result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the Device disables further data events by
setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Input Model

43

Error Handling

Updated in Release 1.10

If the Device encounters an error while gathering or processing event-driven

input, then the Device:

* Changes its State to S ERROR.

* Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the
error condition. This event is added to the end of the queue

* Ifone or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus EL_INPUT _DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

ErrorLocus

Description

EL_INPUT DATA

EL INPUT

Only delivered if the error occurred when one or more
DataEvents are already enqueued.

This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.

This locus was created especially for the Scanner: When this
error event is received from a Scanner Device, the operator can
be immediately alerted to the error so that no further items are
scanned until the error is resolved. Then, the application can
process any backlog of previously scanned items before error
recovery is performed.

Delivered when an error has occurred and there is no data
available.

If some input data was buffered when the error occurred, then
an ErrorEvent with the locus EL_INPUT _DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.

If the Service has partial data that can be delivered with an
ErrorEvent, the related data properties should be filled in prior
to delivery of the event with this ErrorLocus. If there is no
partial data to be delivered with the ErrorEvent, the data
properties should be cleared prior to delivery of this event.

Note: This EL_INPUT event is not delivered if: an
EL _INPUT_DATA event was delivered and the application
event handler responded with an ER_CLEAR error response.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
44 Introduction and Architecture

The application can cause the ErrorResponse property to be set one of the

following:
ErrorResponse Description
ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit

the error state, changing State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUEINPUT This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.

This is the default response when the locus is
EL_INPUT_DATA, and is legal only with this locus.

ER_RETRY This response directs the Device to retry the input. The
error state is exited, and State is changed to S_IDLE.
This response may only be selected when the device

chapter specifically allows it and when the locus is
EL_INPUT. An example is the scale.

The Device exits the Error state when one of the following occurs:

* The application returns from the EL_INPUT ErrorEvent.

* The application calls the clearInput method.

* The application returns from the EL_ INPUT DATA ErrorEvent with
ErrorResponse set to ER_CLEAR.

Miscellaneous Updated in Release 1.10

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
Device.

Calling the clearInput method deletes all input enqueued by a Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

Calling the clearInputProperties method sets all data properties, that were
populated as a result of firing a DataEvent or ErrorEvent, back to their default
values. This call does not reset the DataCount or State properties.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock device.
This type of input is sometimes called “synchronous input.”

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Output Models 45

Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and
asynchronous. A device category may support one or both types, or neither type.

Synchronous Output

The application calls a category-specific method to perform output. The Device
does not return until the output is completed; this means the physical device has
performed the intended operation. For example the printer has successfully
transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output Updated in Release 1.7

The application calls a category-specific method to start the output. The Device
validates the method parameters and produces an error condition immediately if
necessary. If the validation is successful, the Device does the following:

1. Buffers the request in program memory, for delivery to the Physical Device as
soon as the Physical Device can receive and process it.

2. Sets the QOutputID property to an identifier for this request.

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is
enqueued for delivery to the application. A property of this event contains the
output ID of the completed request. If the request is terminated before
completion, due to reasons such as the application calling the clearQutput
method or responding to an ErrorEvent with a ER_ CLEAR response, then no
OutputCompleteEvent is delivered.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
46 Introduction and Architecture

Device Power Reporting Model

Updated in Release 1.8.

Applications frequently need to know the power state of the devices they use.
Note: This model is not intended to report Workstation or POS Terminal power
conditions (such as “on battery” and “battery low”). Reporting of these conditions
is now managed by the POSPower device category, see page 793.

Model

UnifiedPOS architecture segments device power into three states:
* ONLINE. The device is powered on and ready for use. This is the
“operational” state.

* OFF. The device is powered off or detached from the terminal. This is a “non-
operational” state.

* OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

* OFF_OFFLINE. The device is either off or offline, and the Service cannot
distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)

If a device is “offline”, then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Power Reporting Model

47

Power State Diagram

PowerState Unknown
PS_UNKNOWN

[Device is closg(:ﬂl@
|
|

|
Device is dlosed]
|

Known PowerStates

[Deviceis%}

[Device is Off or Offline]

/4 |
PowerState Online
PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline

j PS_OFF_OFFLINE
|

|
[CapPowerReporti‘ng == PR_ADVANCED]
V
Advanced Off/Offline States

PowerState Advanced Offline
PS_OFFLINE

|
[Device is Off] (; [Device is Offline]

PowerState Advanced Off
PS_OFF

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
48 Introduction and Architecture

Power Properties

The UnifiedPOS device power reporting model adds the following common
elements across all device classes.

* CapPowerReporting property. Identifies the reporting capabilities of the
device. The UML pattern for the property is:
PR _xxx : int32 { frozen }

This property may be one of:
* PR NONE. The Service cannot determine the state of the device.

Therefore, no power reporting is possible.

PR _STANDARD. The Service can determine and report two of the power
states - OFF_OFFLINE (that is, off or offline) and ONLINE.

* PR _ADVANCED. The Service can determine and report all three power
states - ONLINE, OFFLINE, and OFF.

* PowerState property. Maintained by the Service at the current power
condition, if it can be determined. The UML pattern for the property is:

PS_xxx :int32 { frozen }
This property may be one of:

« PS_UNKNOWN

« PS_ONLINE

- PS OFF

.« PS_OFFLINE

- PS_OFF_OFFLINE

* PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }
This property may be one of:

PN _DISABLED
« PN _ENABLED

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Power Reporting Model 49

Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN ENABLED:

* When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

* Ifthe Physical Device is ONLINE, then:
PowerState is set to PS_ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_ONLINE.

» Ifthe Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Service may choose to fail the enable by
notifying the application with error code E NOHARDWARE or
E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Service chooses to return success for the enable, then:

PowerState is set to PS_OFF, PS_OFFLINE, or
PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_OFF, SUE POWER OFFLINE, or
SUE POWER_OFF_ OFFLINE.

* When the Device changes from DeviceEnabled true to false, UnifiedPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to PS UNKNOWN

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
50 Introduction and Architecture

Device Information Reporting Model =~ Added in Release 1.8.

POS Applications, as well as System Management agents, frequently need to
monitor the current configuration and usage metrics of the various POS devices
that are attached to the POS terminal.

Examples of configuration data are the device’s Serial Number, Firmware
Version, and Connection Type. Examples of usage data for the POSPrinter device
are the Number of Lines Printed, Number of Hours Running, Number of paper
cuts, etc. Examples of usage data for the Scanner device are the Number of scans,
Number of Hours Running, etc. Examples of usage data for the MSR device are
the Number of successful swipes, Number of swipes resulting in errors, Number of
Hours Running, etc. See below for examples of XML definitions of the device
statistics accumulated per POS device category.

In some cases, the data may be accumulated and stored within the device itself. In
other cases, the data may be accumulated by the Service and stored, possibly on
the POS terminal or store controller.

In order for multiple applications (for example a POS application and a System
Management application) to obtain statistics from the same device, proper care
must be taken by both applications so that the device can be made accessible
when required. This is done by using the claim method and by setting
DeviceEnabled to true when access to a device is required and then setting
DeviceEnabled to false and using the release method when access to the device
is no longer needed. Coordination of device access via this mechanism is the
responsibility of the applications themselves.

Statistics Reporting Properties and Methods

The UnifiedPOS device information reporting model adds the following common
properties and methods across all device classes.

* CapStatisticsReporting property. Identifies the reporting capabilities of the
device. When CapStatisticsReporting is false, then no statistical data
regarding the device is available. This is equivalent to Services compatible
with prior versions of the specification. When CapStatisticsReporting is
true, then some statistical data for the device is available.

* CapUpdateStatistics property. Defines whether gathered statistics (or some
of them) can be reset/updated by the application. This property is only valid if
CapStatisticsReporting is true. When CapUpdateStatistics is false, then
none of the statistical data can be reset/updated by the application. Otherwise,
when CapUpdateStatistics is true, then (some of) the statistical data can be
reset/updated by the application.

* resetStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method resets one, some, or all of the
resettable device statistics to zero.

* retrieveStatistics method. Can only be called if CapStatisticsReporting is
true. This method retrieves one, some, or all of the accumulated statistics for
the device.

* updateStatistics method. Can only be called if both CapStatisticsReporting
and CapUpdateStatistics are true. This method updates one, some, or all of
the resettable device statistics to the supplied values.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device Information Reporting Model 51

XML definitions for POS Device Statistics

The XML files containing the UnifiedPOS defined statistics for each device
category are provided as downloads from the web sites that also host this
specification. These statistics can be referenced individually by name or as a
group using the “U_” string as (part of) the parameter to the statistics methods.

Manufacturers/Service providers can add their specific statistics in the provided
“ManufacturerSpecific” section. These statistics can be referenced individually
by name or as a group using the “M_” string as (part of) the parameter to the
statistics methods.

The following table contains the definitions of the information contained in the
UnifiedPOS defined Devicelnformation section covering all device categories.

<DeviceInformation>
Definition description

XML Definition Name
UnifiedPOSVersion Version of the UnifiedPOS specification supported
DeviceCategory Device category (e.g., POSPrinter)
ManufacturerName Device manufacturer’s name
ModelName Device model name
SerialNumber Device serial number
ManufactureDate Device manufacture date
MechanicalRevision Device hardware revision
FirmwareRevision Device firmware revision
Interface Device hardware interface (e.g., serial, USB)
InstallationDate Device installation date

UnifiedPOS Version 1.11 -- Released January 15, 2007

52

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

The following is an example of the XML file that describes the “UnifiedPOS”
defined statistics for the CashDrawer device category.

<?xml version='1.0" 2>
<UPOSStat version=71.11.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance” xmlns="http://www.nrf-arts.org/IXRetail/
namespace/” xsi:schemalocation="http://www.nrf-arts.org/
IXRetail/namespace/ UPOSStat.xsd”>

<Event>

<Parameter>
<Name>DrawerGoodOpenCount</Name>
<Value>1353</Value>

</Parameter>

<Parameter>
<Name>DrawerFailedOpenCount</Name>
<Value>2</Value>

</Parameter>

<ManufacturerSpecific>
<Name>MyPersonalStat</Name>
<Value>14.32</Value>
<unitofmeasure>meters</unitofmeasure>

</ManufacturerSpecific>

</Event>
<Equipment>

<UnifiedPOSVersion>1.11</UnifiedPOSVersion>
<DeviceCategory UPOS="”CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<ManufactureDate>1999-12-31</ManufactureDate>
<MechanicalRevision>1A</MechanicalRevision>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>
</UPOSStat>

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the NRF-ARTS web site at

http://www.nrf-arts.org.

UnifiedPOS Version 1.11 -- Released January 15, 2007

http://www.nrf-arts.org
http://www.nrf-arts.org

Device Behavior Models: Update Firmware Device Model 53

Update Firmware Device Model Added in Release 1.9

POS Applications frequently require the ability to update the firmware in the
various POS devices that are attached to the POS terminal. This model defines a
consistent application interface for updating the firmware in a device controlled
by a UnifiedPOS control.

This model has the following capabilities:

A property, CapUpdateFirmware, that indicates whether a device supports
firmware updating.

A property, CapCompareFirmwareVersion, that indicates whether a
firmware file’s version can be compared against the firmware version of the
device.

A method, updateFirmware, to perform an asynchronous update of the
firmware in a device.

A method, compareFirmwareVersion, to compare the firmware file’s
version against the firmware version of the device.

Additional StatusUpdateEvent Status values to report the progress of an
asynchronous update firmware process.

The update firmware process is an asynchronous operation that reports its
progress via StatusUpdateEvents. This update firmware process applies to all
device categories defined in UnifiedPOS.

The means by which a Service actually updates the firmware in the device is not
covered by this document, only the means by which the update firmware process
is started and progress is reported.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
54 Introduction and Architecture

Device States

UnifiedPOS defines a property State with the following values:

S _CLOSED
S IDLE

S BUSY

S _ERROR

The State property is set as follows:

« State is initially S CLOSED.
* State is changed to S_IDLE when the open method is successfully called.

e State is set to S BUSY when the Service is processing output. The State is
restored to S_IDLE when the output has completed.

* The State is changed to S ERROR when an asynchronous output encounters
an error condition, or when an error is encountered during the gathering or
processing of event-driven input.

After the Service changes the State property to S_ ERROR, it notifies the
application of this error. The properties of this event are the error code and
extended error code, the locus of the error, and a mutable response to the error.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Device States 55

Device State Diagram

Closed
State == S_CLOSED

m
/closé‘
\

Opened
/open

[async output in progress]

Idle e e & Busy
State == S_IDLE State == S_BUSY
J—

[error eventdone and no async oufput]

[async outplterrororinput event error]

Error
State == S_ERROR

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

56

Introduction and Architecture

Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of
some Devices. UnifiedPOS imposes the following requirements on Control and
Service versions:

Control requirements. A Control for a device category must operate with
any Service for that category, as long as its major version number matches the
Service's major version number. If they match, but the Control's minor version
number is greater than the Service’s minor version number, then the Control
may support some new methods or properties that are not supported by the
Service’s release. If an application calls one of these methods or accesses one
of these properties, the application will be notified of an error condition
(E_NO_SERVICE).

Service requirements. A Service for a device category must operate with any
Control for that category, as long as its major version number matches the
Control's major version number. If they match, but the Service's minor version
number is greater than the Control's minor version number, then the Service
may support some methods or properties that cannot be accessed from the
Control.

When an application wishes to take advantage of the enhancements of a version,

it must first determine that the Control and Service are at the proper major version
and at or greater than the proper minor version. The versions are reported by the

properties DeviceControlVersion (see page 71) and DeviceServiceVersion (see
page 73).

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Deprecation Handling 57

Deprecation Handling Added in Release 1.11

In order to be able to rectify misunderstandings and/or ambiguities in the
specification, a method of deprecation is required in order to eliminate these
items over time.

Deprecation can be applied to Properties and Methods, as well as parameters,
constants, and enumerations.

When an element is marked as deprecated, then Service providers are required to
support the element’s functionality for the following two minor releases of the
standard. Starting with the third release of the standard after an element has been
marked as deprecated, usage of the element will result in an E DEPRECATED
status.

When an element is marked as deprecated, then support for the element will be
removed from the standard in the next major release of the standard after it is
marked as deprecated.

All deprecated elements and the related versions when they were first marked as
deprecated are listed in “APPENDIX G Deprecation History”.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
Introduction and Architecture

Hydra Device Considerations Added in Release 1.11

Initial Connectivity Model

When the development of the POS peripheral standard began, it was decided that
the most flexible methodology would be to have an application be able to
communicate to a peripheral through a two-layer process. Since the Microsoft
platform was the first out of the chute, Control Object and Service Object names
were chosen. Later when Java was defined and the technology used precluded the
use of “objects” as defined in the Windows world, the names were closely linked
using the terminology Device Control and Device Service. Functionality however
at the higher level, remained the same.

Control Object or Device Control (Control)

A thin layer of software was defined that would allow for what we commonly call
“connecting the pipes” wherein a communication port would be opened and a
device name would be assigned so that the application could communicate to the
peripheral using that device name.

Service Object or Device Service (Service)

The usually vendor-specific code that interfaces with the peripheral device to
allow for accessing, monitoring, processing, all the functionality of the peripheral
device and exposing it to a common set of properties, methods, and events that an
application needs to interact with the peripheral.

For mono-function peripheral devices, the process is very straightforward. In the
most simplistic system one instance of a Control is instantiated to connect to the
Service. As example for a simple POSPrinter:

Note that only one physical connection port (RS-232 for example) is used in this example...

Application

A

Control

A

Service
Service for Functionality of Peripheral
Device and supports Physical

Connection to the Peripheral Device
A

A 4

POS Receipt
Printer

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Hydra Device Considerations 59

Keeping things simple but adding another level of complexity is the case when
more than one application wants to use the device. In this case, another Control is
instantiated to the peripheral Service and the applications need to recognize that
the peripheral is capable of being shared (for this example, assuming a shareable
device) and utilize the claim and release methodology that the standard provides
for. In the POSPrinter example, this would look like...

Note that only one physical connection port (RS-232 for example) is used in this example...

Application One Application Two
y A
A 4 A 4
Control One Control Two
y A
A 4 A 4
Service

Service for Functionality of Peripheral Device and
supports Physical Connection to the Peripheral

Device
A
v
POS Receipt
Printer

Note that to each application it is connected to the peripheral device and only one
physical connection to the device is required via the RS-232 serial connection in
this example. Life was good and things were pretty straightforward.

Multi-Function (Hydra) Peripheral Devices

The model needed to be expanded to cover the peripherals that
include multiple device class functionality in a single unit.
These peripherals are referred to as “Hydra” peripherals
alluding to the Greek mythology of a multi-headed animal that
was connected to a single body interface.

In the interaction of POS peripherals, the interface to the
Application needs to be agnostic in its knowledge in either of
the following cases...one where multiple physical peripheral devices are used or
the other where one physical peripheral device incorporates the functionality of
multiple physical peripheral devices.

Where multiple physical peripheral devices are present, multiple “pipes” (RS-232
serial ports for instance) are required...one for each of the physical peripheral
devices.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
60 Introduction and Architecture

In a Hydra peripheral only one “pipe” is required and it is used to communicate
with all the various Device peripheral functionality of the connected peripheral
device.

For example, consider the case where in one instance a separate POSPrinter
device and a separate MICR device is present and the case where a Hydra
POSPrinter that has a built in MICR reader is to be used. The “look” to the
Application(s) has to be agnostic...it should not care nor should it have to have
different code to interact with either implementation of the peripheral
capabilities. For example:

Application interfacing with two distinct peripherals...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control
A
A 4 \ 4
MICR Service POSPrinter Service
Separate Physical Separate Physical
Device Device
RS-232 Port 1 RS-232 Port 2

Note that in this case the application running the MICR and the POSPrinter
consumes two separate ports but as far as the Application is concerned it
interfaces to the MICR and POSPrinter functionality without regard to the fact
that the two ports are used.

Application interfacing with a Hydra peripheral...

Application That Needs Functionality for

MICR POSPrinter
MICR POSPrinter
Control Control

v i v 1

Service For Hydra Device
Has Functionality for both MICR and POSPrinter In One
Physical Package

RS-232 Port 1

MICR Device Function POSPrinter Device Function

UnifiedPOS Version 1.11 -- Released January 15, 2007

Device Behavior Models: Hydra Device Considerations 61

Note that in this case the application running the MICR and POSPrinter
consumes only one port but as far as the application is concerned it interfaces to
the MICR and POSPrinter functionality without regard to the fact that only one
port is used. It is up to the Hydra Service to control the port and route the
functionality to and from the proper interface.

Considerations

While the desire is to have both interconnection techniques work the same with
regards to the Application interface, problems do arise. In the Hydra case, an
error state in one of the functions may block the usage of the other function. This
would not happen in the non-Hydra case since each peripheral is truly separate. In
the Hydra case, the printer running out of paper might present a condition that
would prevent reading a MICR code for instance. An error condition of “Out of
Paper” would be reported through the POSPrinter interface but would not have
any meaning to a route through the MICR interface. However, an error condition
needs to be reported to the application that is using the MICR functionality to
alert it to an error condition. Rather than reporting a meaningless error of “Out of
Paper” to the MICR application, a general E_ FAILURE error might be sent back
to the application to alert it of a problem. The MICR application would then be
responsible to go through an error recovery procedure to rectify the situation and
informing the operator to check the MICR device for possible problem resolution.
Operator knowledge of the specific device would then be used to correct the
problem, in this case replace the paper to clear the error condition and allow for
MICR reads to take place.

Notice that every attempt is made to make the interaction with the peripheral
device or Hydra peripheral device “look the same” to the application. Careful
Service design needs to be used to make sure this is accomplished. Device
vendors should define any limitations and unusual error conditions that may exist
when accessing such hydra devices in their user documentation.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
62 Introduction and Architecture

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 1

Common Properties, Methods, and Events

Summary

The following Properties, Methods, and Events are used for all device categories
unless noted otherwise in the Usage Notes table entry. For an overview of the
general rules and usage guidelines, see “Device Behavior Models” on page 32.

Updated in Release 1.10

The following property list is a summary of the JavaPOS Common Properties.
This list is used throughout the main UnifiedPOS chapters. Further details may be
found in Appendix B, “Common Properties” on page B-61.

The OPOS implementation adds the following Common Properties:
BinaryConversion, OpenResult, ResultCode, and ResultCodeExtended.

Also, the last six properties are replaced by:
ControlObjectDescription, ControlObjectVersion, ServiceObjectDescription,
ServiceObjectVersion, DeviceDescription, and DeviceName.

Further details may be found in Appendix A, “Common Properties” on page A-26.

Properties (UML attributes)

. . Usage

Name Type Mutability Version No tfs
AutoDisable: boolean { read-write } 1.2 1
CapCompareFirmwareVersion: boolean { read-only } 1.9
CapPowerReporting: int32 { read-only } 1.3
CapStatisticsReporting: boolean { read-only } 1.8
CapUpdateFirmware: boolean { read-only } 1.9
CapUpdateStatistics: boolean { read-only } 1.8
CheckHealthText: string { read-only } 1.0
Claimed: boolean { read-only } 1.0
DataCount: int32 { read-only } 1.2 1
DataEventEnabled: boolean { read-write } 1.0 1
DeviceEnabled: boolean { read-write } 1.0
FreezeEvents: boolean { read-write } 1.0
OutputID: int32 { read-only } 1.0 2
PowerNotify: int32 { read-write } 1.3
PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0
DeviceControlDescription: string { read-only } 1.0
DeviceControlVersion: int32 { read-only } 1.0
DeviceServiceDescription: string { read-only } 1.0
DeviceServiceVersion: int32 { read-only } 1.0
PhysicalDeviceDescription: string { read-only } 1.0
PhysicalDeviceName: string { read-only } 1.0

Usage Notes:
1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

UnifiedPOS Retail Peripheral Architecture Chapter 1
64 Common Properties, Methods, and Events

Methods (UML operations)

Name Version

open (logicalDeviceName: string): 1.0
void { raises-exception }

close (): 1.0
void { raises-exception }

claim? (timeout: int32): 1.0
void { raises-exception }

release® (): 1.0
void { raises-exception }

checkHealth (level: inz32): 1.0
void { raises-exception }

clearInput (): 1.0
void { raises-exception }

clearInputProperties (): 1.10
void { raises-exception }

clearOutput (): 1.0

void { raises-exception }

directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception }

a. Note: In the OPOS environment starting with Release 1.5, the Claim and Release
methods are also defined as ClaimDevice and ReleaseDevice respectively
due to Release being a reserved method used by Microsoft’s Component
Object Model (COM).

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 65
Events (UML interfaces)
e . Usage

Name Type Mutability Version Notes
upos::events::DataEvent 1.0 1

Status: int32 { read-only }
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent 1.0

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent 1.0 2

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.0

Status:

Usage Notes:

int32 { read-only }

1.Used only with Devices that have Event Driven Input.
2.Used only with Asynchronous Output Devices.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
66 Common Properties, Methods, and Events

General Information

This section lists properties, methods, and events that are common to many of the
peripheral devices covered in this standard.

The summary section of each device category marks those common properties,
methods, and events that do not apply to that category as “Not Supported.” Items
identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is
required. Please see “Device Behavior Models” on page 32 for additional
information.

Common PME Class Diagram Updated in Release 1.10

The following diagram shows the relationships between the Common classes.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

67

<<event>>
UposEvent

(fromevents)

<fires

<<uses>>/"

<<utility>>
UposConst

(from upos)

[

[
<<’&ses>>
\
\

—

\ <<s¥nds>,

<<Interface>>
BaseControl
(fromupos)

<<capability>> CapCompareFirmwareVersion : boolean
<<capability>> CapPowerReporting : int32
<<capability>> CapStatisticsReporting : boolean
<<capability>> CapUpdateFirmware : boolean
<<capability>> CapUpdateStatistics : boolean
<<prop>> AutoDisable : boolean

<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean

<<prop>> DataCount : int32

<<prop>> DataEventEnabled : boolean
<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> OutputID : int32

<<prop>> PowerNotify : int32

<<prop>> PowerState : int32

<<prop>> State : int32

<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceSeniceDescription : string
w<<prop>> DeviceSeniceVersion : int32
<<prop>> PhysicalDeviceDescription : string
<<prop>> PhysicalDeviceName : string

Fopen(logicalDeviceName : string) : void

Bclose() : void

®claim(timeout : int32) : void
®compareFirmwareVersion(firmwareFileName : string, out result : int32) : void
Brelease() : void

FresetStatistics(statisticsBuffer : string) : void

®checkHealth(level : int32) : void

®clearinput() : void

®clearlnputProperties() : void

®clearOutput() : void

FdirectlO(command : int32, inout data : int32, inout obj : Object) : void
retrieveStatistics(inout statisticsBuffer : string) : void
BupdateFirmware(firmwareFileName : string) : void
®updateStatistics(statisticsBuffer : string) : void

T 4 A 5

\<<sends>>
<<sends>> \

<<US€S>>J," <<uses>>

R <<exception>>
UposException
(from upos)

— N

I

<<Interface>>
BumpBarControl
(from upos)

<<Interface>>
MSRControl
(from upos)

<<Interface>>
POSPrinterControl
(from upos)

/é<sends>>

<<interface>>
<DevCat>Control

(from upos)

Notes:

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
POSPrinter, MICR, ...

AutoDisable, DataCount, and DataEventEnabled are used only with
Devices that have Event Driven Input.
OutputID is used only with Asynchronous Output Devices.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
68 Common Properties, Methods, and Events

Properties (UML attributes)
AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives
and enqueues data as a DataEvent. Before any additional input can be received,
the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when
data is received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also “Device Input Model” on page 42.
CapCompareFirmwareVersion Property Added in Release 1.9

Syntax CapCompareFirmwareVersion: boolean { read-only, access after open }

Remarks If true, then the Service/device supports comparing the version of the firmware in
the physical device against that of a firmware file.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also compareFirmwareVersion Method.

CapPowerReporting Property Updated in Release 1.11

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following
values:
Value Meaning
PR NONE The UnifiedPOS Service cannot determine the state of

the device. Therefore, no power reporting is possible.

PR STANDARD The UnifiedPOS Service can determine and report two

of the power states - OFF_OFFLINE (that is, off or
offline) and ONLINE.

PR _ADVANCED The UnifiedPOS Service can determine and report all
three power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also “Device Power Reporting Model” on page 46, PowerState Property,
PowerNotify Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 69

CapStatisticsReporting Property Added in Release 1.8

Syntax CapStatisticsReporting: boolean { read-only }

Remarks If true, the device accumulates and can provide various statistics regarding usage;
otherwise no usage statistics are accumulated. The information accumulated and
reported is device specific, and is retrieved using the retrieveStatistics method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also retrieveStatistics Method.

CapUpdateFirmware Property Added in Release 1.9
Syntax CapUpdateFirmware: boolean { read-only, access after open }
Remarks If true, then the device’s firmware can be updated via the updateFirmware
method.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.
See Also updateFirmware Method.

CapUpdateStatistics Property Added in Release 1.8

Syntax CapUpdateStatistics: boolean { read-only }

Remarks If true, the device statistics, or some of the statistics, can be reset to zero using the
resetStatistics method, or updated using the updateStatistics method.

If CapStatisticsReporting is false, then CapUpdateStatistics is also false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CapStatisticsReporting Property, resetStatistics Method, updateStatistics

Method.
CheckHealthText Property
Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:
¢ “Internal HCheck: Successful”
» “External HCheck: Not Responding”
e “Interactive HCheck: Complete”
This property is empty (“”’) before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40

See Also checkHealth Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

70

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Claimed Property

Syntax

Remarks

Errors

See Also

Claimed: boolean { read-only }

If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Device Initialization and Finalization” on page 34, “Device Sharing Model” on
page 38, claim Method, release Method.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only }
Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Device Input Model” on page 42, DataEvent.

DataEventEnabled Property

Syntax

Remarks

Errors

See Also

DataEventEnabled: boolean { read-write }

Iftrue, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input
error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Events” on page 39, DataEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 71

DeviceControlDescription Property

Syntax

Remarks

Errors

See Also

DeviceControlDescription: string { read-only }
Holds an identifier for the UnifiedPOS Control and the company that produced it.
A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998
Epson”

This property is always readable.
None.

DeviceControlVersion Property.

DeviceControlVersion Property

Syntax

Remarks

Errors

See Also

DeviceControlVersion: int32 { read-only }
Holds the UnifiedPOS Control version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control
developer. Updated when corrections are made to the
UnifiedPOS Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the UnifiedPOS Control.

This property is always readable.
None.

“Version Handling” on page 56, DeviceControlDescription Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

72

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DeviceEnabled Property

Syntax

Remarks

Errors

See Also

DeviceEnabled: boolean { read-write }

If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

The Device’s power state may be reported while DeviceEnabled is true; See
“Device Power Reporting Model” on page 46 for details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Device Initialization and Finalization” on page 34.

DeviceServiceDescription Property

Syntax

Remarks

Errors

DeviceServiceDescription: string { read-only }
Holds an identifier for the UnifiedPOS Service and the company that produced it.
A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver,
(C) 1998 Epson”

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 73

DeviceServiceVersion Property

Syntax

Remarks

Errors

See Also

DeviceServiceVersion: int32 { read-only }
Holds the UnifiedPOS Service version number.
Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service
developer. Updated when corrections are made to the
UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Version Handling” on page 56, DeviceServiceDescription Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

74

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

FreezeEvents Property

Syntax

Remarks

Errors

FreezeEvents: boolean { read-write }

If true, the UnifiedPOS Control will not deliver events. Events will be enqueued
until this property is set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

OutputID Property

Syntax

Remarks

Errors

See Also

OutputID: int32 { read-only }
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are
guaranteed to be unique among the set of outstanding asynchronous outputs. No
other facts about the ID should be assumed.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

“Device Output Models” on page 45, OutputCompleteEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 75

PowerNotify Property

Syntax

Remarks

Errors

See Also

PowerNotify: int32 { read-write }

Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

PN _DISABLED The UnifiedPOS Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized to PN_DISABLED by the open method. This value
provides compatibility with earlier releases.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following occurred:
e The device is already enabled.

* PowerNotify = PN_ENABLED but
CapPowerReporting = PR NONE.

“Device Power Reporting Model” on page 46, CapPowerReporting Property,
PowerState Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
76 Common Properties, Methods, and Events

PowerState Property Updated in Release 1.11

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:
Value Meaning

PS UNKNOWN Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting =PR_NONE; the device does not
support power reporting.

PowerNotify = PN DISABLED; power notifications
are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

PS_ONLINE The device is powered on and ready for use. Can be
returned if CapPowerReporting=PR_STANDARD or
PR_ADVANCED.

PS OFF The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
=PR_ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

PS_OFF_OFFLINE The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

This property is initialized to PS_ UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the UnifiedPOS Service detects power condition changes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also “Device Power Reporting Model” on page 46, CapPowerReporting Property,
PowerNotify Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 77

PhysicalDeviceDescription Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceDescription: string { read-only }
Holds an identifier for the physical device.
A sample returned string is:
“NCR 7192-0184 Printer, Japanese Version”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

PhysicalDeviceName Property.

PhysicalDeviceName Property

Syntax

Remarks

Errors

See Also

PhysicalDeviceName: string { read-only }

Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

PhysicalDeviceDescription Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
78 Common Properties, Methods, and Events

State Property
Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

S CLOSED The Device is closed.

S IDLE The Device is in a good state and is not busy.

S BUSY The Device is in a good state and is busy performing
output.

S_ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.
Errors None.

See Also “Device Information Reporting Model” on page 50.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 79

Methods (UML operations)

checkHealth Method

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting
UnifiedPOS Service will typically display a modal
dialog box to present test options and results.

Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The specified health check level is not supported by the
UnifiedPOS Service.

CheckHealthText Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

80

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

claim Method

Syntax

Remarks

Errors

See Also

Updated in Release 1.11
claim (timeout: int32):
void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If FOREVER (-1), the method
waits as long as needed until exclusive access is satisfied.

Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

E TIMEOUT Another application has exclusive access to the device,

and did not relinquish control before timeout
milliseconds expired.

“Device Initialization and Finalization” on page 34, “Device Sharing Model” on
page 38, release Method.

clearlnput Method

Syntax

Remarks

Errors

See Also

clearInput ():
void { raises-exception }

Clears all device input that has been buffered.

Any data events or input error events that are enqueued — usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false — are also
cleared.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

“Device Input Model” on page 42.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 81

clearlnputProperties Method Added in Release 1.10

Syntax

clearInputProperties ():
void { raises-exception }

Remarks Sets all data properties that were populated as a result of firing a DataEvent or
ErrorEvent back to their default values. This does not reset the DataCount or
State properties.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also “Device Input Model” on page 42.

clearOutput Method Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception }

Remarks Clears all buffered output data, including all asynchronous output. Also, when
possible, halts outputs that are in progress.
Any output error events that are enqueued — usually waiting for FreezeEvents to
be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also “Device Output Models” on page 45.

close Method

Syntax

Remarks

Errors

See Also

close ():
void { raises-exception }

Releases the device and its resources.
If the DeviceEnabled property is true, then the device is disabled.
If the Claimed property is true, then exclusive access to the device is released.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

“Device Initialization and Finalization” on page 34, open Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1

82 Common Properties, Methods, and Events
compareFirmwareVersion Method Added in Release 1.9
Syntax compareFirmwareVersion (firmwareFileName: string, out result: int32):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the
firmware or a file containing a set of firmware files
whose versions are to be compared against those of the
device.
result Location in which to return the result of the comparison.
Remarks This method determines whether the version of the firmware contained in the

specified file is newer than, older than, or the same as the version of the firmware
in the physical device.

The Service should check that the specified firmware file exists and that its
contents are valid for this device before attempting to perform the comparison
operation.

The result of the comparison is returned in the result parameter and will be one of
the following values:

Value Meaning

CFV_FIRMWARE OLDER Indicates that the version of one or more of the
firmware files is older than the firmware in the
device and that none of the firmware files is
newer than the firmware in the device.

CFV_FIRMWARE SAME Indicates that the versions of all of the firmware
files are the same as the firmware in the device.

CFV_FIRMWARE NEWER Indicates that the version of one or more of the
firmware files is newer than the firmware in the
device and that none of the firmware files is
older than the firmware in the device.

CFV_FIRMWARE DIFFERENT
Indicates that the version of one or more of the
firmware files is different than the firmware in
the device, but either:

* The chronological relationship cannot be
determined, or

* The relationship is inconsistent -- one or
more are older while one or more are newer.

CFV_FIRMWARE UNKNOWN
Indicates that a relationship between the two
firmware versions could not be determined. A
possible reason for this result could be an
attempt to compare Japanese and US versions
of firmware.

If the firmwareFileName parameter specifies a file list, all of the component
firmware files should reside in the same directory as the firmware list file. This
will allow for distribution of the updated firmware without requiring a
modification to the firmware list file.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 83

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapCompareFirmwareVersion is false.
E_NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.

E _EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapCompareFirmwareVersion Property.

directlO Method

Syntax

Remarks

Errors

See Also

directlO (command: inf32, inout data: inf32, inout obj: object):
void { raises-exception }

Parameter Description

command Command number whose specific values are assigned
by the UnifiedPOS Service.

data An array of one mutable integer whose specific values
or usage vary by command and UnifiedPOS Service.

obj Additional data whose usage varies by command and

UnifiedPOS Service.
Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality
to the application that is not otherwise supported by the standard UnifiedPOS
Control for its device category. Depending upon the UnifiedPOS Service’s
definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

DirectlOEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

84

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

open Method Updated in Release 1.7

Syntax open (logicalDeviceName: string):

void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent 1/0.

The device name specifies which of one or more devices supported by this
UnifiedPOS Control should be used. The logicalDeviceName must exist in the
operating system’s reference locator system (such as the JavaPOS Configurator/
Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference
locator system are created by a setup or configuration utility.

The following sequence diagram shows the details of what needs to happen during
the open method call processing to allow the creation of the Service and its binding
to the Control.

NOTE: shows the details of what should happen at open() time. This diagram tries to be generic w/o reference to particular
platform. Note also, that some platform binding might have "easier" or "harder" AP to accomplish the same task.

:ClientApp :<DevCat> :Config :Loader :<DevCat>
(registry of senice properties) Senice

NOTE1: we are assuming that the :Config object has or can obtain at runtime the configuration information for the
senices that will be used. In particular the <DevCat> device is configured with logical name named "logicalName"
NOTE2: <DevCat> is a moniker for a generic control and DevCat == POSPrinter, Keylock, CashDrawer, ... all the
UnifiedPOS device categories ‘

1: open(logicalName

2: find properties of senice Lith logicalName ‘ ‘

Errors

‘ 3: pass loader properties, and ask to %reate senice ‘

\ 4: Ioaderyrses properties ard loads the <DevCat>Sen/icr

7ZI

\ / L 5: create and/or bind to service

6: retum égrvfce instance/fo control

|

The details of these steps might vary per platform and the
Config and Loader could be done by the same entity.

However, logically the actions above are happening on the
system. ‘

444:4
—

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the UnifiedPOS software layers. Additional category-
specific properties may also be initialized.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 85

See Also

release Method

Syntax

Remarks

Errors

See Also

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The UnifiedPOS Control is already open.

E _NOEXIST The specified logicalDeviceName was not found.

E NOSERVICE Could not establish a connection to the corresponding

UnifiedPOS Service.

“Device Initialization and Finalization” on page 34, “Version Handling” on page
56, close Method.

release ():
void { raises-exception }

Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The application does not have exclusive access to the
device.

“Device Sharing Model” on page 38, claim Method.

resetStatistics Method Updated in Release 1.10

Syntax

Remarks

resetStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics that are to be reset.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
resettable statistics are to be reset, “U_" means all UnifiedPOS defined resettable
statistics are to be reset, “M_" means all manufacturer defined resettable statistics
are to be reset, and “actual namel, actual name2” (from the XML file definitions)
means that the specifically defined resettable statistic(s) are to be reset.

Resets the defined resettable statistics in a device to zero. All the requested
statistics must be successfully reset in order for this method to complete
successfully, otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

UnifiedPOS Version 1.11 -- Released January 15, 2007

86

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/resettable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be reset.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be reset in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

retrieveStatistics Method Added in Release 1.8

Syntax

Remarks

retrieveStatistics (inout statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics to be retrieved and
in which the retrieved statistics are placed.

This is a comma-separated list of name(s), where an empty string (“”’) means ALL
statistics are to be retrieved, “U_” means all UnifiedPOS defined statistics are to
be retrieved, “M_ means all manufacturer defined statistics are to be retrieved,
and “actual namel, actual name2” (from the XML file definitions) means that the
specifically defined statistic(s) are to be retrieved.

Retrieves the requested statistics from a device.

CapStatisticsReporting must be true in order to successfully use this method.
This method is always executed synchronously.

All calls to retrieveStatistics will return the following XML as a minimum:

<?xml version="1.0" 2>

<UPOSStat version=”1.11.0" xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance” xmlns="http://www.nrf-arts.org/IXRetail/
namespace/” xsi:schemalocation="http://www.nrf-arts.org/IXRetail/
namespace/ UPOSStat.xsd”>

<Event>

<Parameter>
<Name>RequestedStatistic</Name>
<Value>1234</Value>
</Parameter>

</Event>
<Equipment>

<UnifiedPOSVersion>1.11</UnifiedPOSVersion>
<DeviceCategory UPOS="CashDrawer” />
<ManufacturerName>Cashdrawers R Us</ManufacturerName>
<ModelName>CD-123</ModelName>
<SerialNumber>12345</SerialNumber>
<FirmwareRevision>1.0 Rev. B</FirmwareRevision>
<Interface>RS232</Interface>
<InstallationDate>2000-03-01</InstallationDate>

</Equipment>

</UPOSStat>

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 87

If the application requests a statistic name that the device does not support, the
<Parameter> entry will be returned with an empty <value>. e.g.,
<Parameter>
<Name>RequestedStatistic</Name>
<Value></Value>
</Parameter>
All statistics that the device collects that are manufacturer specific (not defined in the
schema) will be returned in a <ManufacturerSpecific> tag instead of a <Parameter>
tag. e.g.,
<ManufacturerSpecific>
<Name>TheAnswer</Name>
<Value>42</Value>
</ManufacturerSpecific>
When an application requests all statistics from the device, the device will return a
<Parameter> entry for every defined statistic for the device category as defined by the
XML schema version specified by the version attribute in the <UPOSStat> tag. If the
device does not record any of the statistics, the <value> tag will be empty.

The most up-to-date files defining the XML tag names and example schemas for the
statistics for all device categories can be downloaded from the NRF-ARTS web site at

http://www.nrf-arts.org.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapStatisticsReporting is false or the named statistic is
not defined.
See Also CapStatisticsReporting Property.
updateFirmware Method Added in Release 1.9
Syntax updateFirmware (firmwareFileName: string):
void { raises-exception, use after open-claim-enable }
Parameter Description
firmwareFileName Specifies either the name of the file containing the

firmware or a file containing a set of firmware files that
are to be downloaded into the device.

Remarks This method updates the firmware of a device with the version of the firmware
contained or defined in the file specified by the firmwareFileName parameter
regardless of whether that firmware’s version is newer than, older than, or the
same as the version of the firmware already in the device. If the firmwareFileName
parameter specifies a file list, all of the component firmware files should reside in
the same directory as the firmware list file. This will allow for distribution of the
updated firmware without requiring a modification to the firmware list file.

When this method is invoked, the Service should check that the specified firmware
file exists and that its contents are valid for this device. If so, this method should
return immediately and the remainder of the update firmware process should
continue asynchronously.

UnifiedPOS Version 1.11 -- Released January 15, 2007

http://www.nrf-arts.org
http://www.nrf-arts.org

88

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

Errors

See Also

The Service should notify the application of the status of the update firmware
process by firing StatusUpdateEvents with values of SUE_ UF_ PROGRESS +an
integer between 1 and 100 indicating the completion percentage of the update
firmware process. For application convenience, the StatusUpdateEvent value
SUE_UF_COMPLETE is defined to be the same value as SUE_ UF_PROGRESS
+100.

For consistency, the update firmware process is complete after the new firmware
has been downloaded into the physical device, any necessary physical device reset
has completed, and the Service and the physical device have been returned to the
state they were in before the update firmware process began.

For consistency, a Service must always fire at least one StatusUpdateEvent with
an incomplete progress completion percentage (i.e. a percentage between 1 and
99), even if the device cannot physically report the progress of the update firmware
process. If the update firmware process completes successfully, the Service must
fire a StatusUpdateEvent with a progress of 100 or use the special constant
SUE_UF_COMPLETE, which has the same value. These Service requirements
allow applications using this method to be designed to always expect some level
of progress notification.

If an error is detected during the asynchronous portion of a update firmware
process, one of the following StatusUpdateEvents will be fired:

Value Meaning

SUE _UF FAILED DEV_OK The update firmware process failed but the
device is still operational.

SUE UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the
device is neither usable nor recoverable
through software. The device requires service
to be returned to an operational state.

SUE _UF FAILED DEV_NEEDS FIRMWARE
The update firmware process failed and the
device will not be operational until another
attempt to update the firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the
device is in an indeterminate state.

A UposException may be thrown when this method is invoked. For further

information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL CapUpdateFirmware is false.
E _NOEXIST The file specified by firmwareFileName does not exist

or, if firmwareFileName specifies a file list, one or more
of the component firmware files are missing.

E EXTENDED ErrorCodeExtended = EFIRMWARE BAD_ FILE:
The specified firmware file or files exist, but one or
more are either not in the correct format or are corrupt.

CapUpdateFirmware Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 89

updateStatistics Method Updated in Release 1.10

Syntax

Remarks

Errors

See Also

updateStatistics (statisticsBuffer: string):
void { raises-exception }

Parameter Description

statistics Buffer The data buffer defining the statistics with values that
are to be updated.

This is a comma-separated list of name-value pair(s), where an empty string name
(““”=valuel”) means ALL resettable statistics are to be set to the value “valuel”,
“U_=value2” means all UnifiedPOS defined resettable statistics are to be set to the
value “value2”, “M_=value3” means all manufacturer defined resettable statistics
are to be set to the value “value3”, and “actual namel=value4,

actual name2=value5” (from the XML file definitions) means that the specifically
defined resettable statistic(s) are to be set to the specified value(s).

Updates the defined resettable statistics in a device. All the requested statistics
must be successfully updated in order for this method to complete successfully,
otherwise an ErrorCode of E_ EXTENDED is returned.

Both CapStatisticsReporting and CapUpdateStatistics must be true in order to
successfully use this method.

This method is always executed synchronously.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapStatisticsReporting or CapUpdateStatistics is
false, or the named statistic is not defined/updatable.

E_EXTENDED ErrorCodeExtended = ESTATS _ERROR:
At least one of the specified statistics could not be
updated.

ErrorCodeExtended = ESTATS DEPENDENCY:
At least one other statistic is required to be updated in
addition to a requested statistic.

CapStatisticsReporting Property, CapUpdateStatistics Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
90 Common Properties, Methods, and Events

Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive
a specific implementation case. The UML event base control model and interfaces
are shown below for the events.

upos::BaseControl

<<utility>>
UposConst

(from upos)

7
' <<uses>>
/
<< >>) <<Interface>>
event fires
UposEvent BaseControl
(from events) (from upos)

. <<sends>>

N
A\

<<exception>>
UposException
(from upos)

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces)

91

upos::events interfaces

<<event>>
UposEvent
<<event>> | (fromevents) | <<event>>
DataEvent —] N OutputCompleteEvent
(from events) | (from events)
<<prop>> Status : int32 T‘ <<prop>> OutputlD : int32
<<event>> ‘ <<event>>
DirectlOEvent \ StatusUpdateEvent
(from events) ‘ (from events)
&#<<prop>> EventNumber : int32 ‘ <<prop>> Status : int32
&<<prop>> Data : int32 \
<<prop>> Obj : object \
|
<<event>>
ErrorEvent

(from events)

&<<prop>> ErrorCode : int32
4<<prop>> ErrorCodeExtended : int32
&<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

UnifiedPOS Version 1.11 -- Released January 15, 2007

92

UnifiedPOS Retail Peripheral Architecture Chapter 1
Common Properties, Methods, and Events

DataEvent

<<event>>

Description

Attribute

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available from the device.
This event contains the following attribute:

Attribute Type Description

Status int32 The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

“Events” on page 39, “Device Input Model” on page 42, DataEventEnabled
Property, FreezeEvents Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 93

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

Updated in Release 1.7

upos::events::DirectlOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides UnifiedPOS Service information directly to the application. This event
provides a means for a vendor-specific UnifiedPOS Service to provide events to
the application that are not otherwise supported by the UnifiedPOS Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
UnifiedPOS Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the UnifiedPOS Service. This
attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the UnifiedPOS Service. This attribute is settable. !

This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the UnifiedPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the UnifiedPOS Service’s need for this
event.

“Events” on page 39, directlO Method.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1

94 Common Properties, Methods, and Events
ErrorEvent Updated in Release 1.10
<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.
Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes under “Error Codes” on page 40.

ErrorCodeExtended
int32 Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this attribute is settable). See
values below.

The ErrorLocus attribute has one of the following values:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event handler can set the ErrorResponse attribute to one of
the following values:

Value Meaning
ER _RETRY Retry the input or asynchronous output. The error state
is exited.

May be valid only when locus is EL._INPUT. Default
when locus is EL_OUTPUT.

ER _CLEAR Clear all buffered output data (including all
asynchronous output) or buffered input data. The error
state is exited. Default when locus is EL_INPUT.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 95

ER_CONTINUEINPUT
Acknowledges the error and directs the Device to
continue input processing. The Device remains in the
error state and will deliver additional DataEvents as
directed by the DataEventEnabled property. When all
input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Use only when locus is EL_ INPUT DATA. Default
when locus is EL_ INPUT DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions
into the error state. Input error events are not delivered until DataEventEnabled
is true, so that proper application sequencing occurs.

See Also “Device Input Model” on page 42, “Device Information Reporting Model” on
page 50.

OutputCompleteEvent
<<event>> upos::events::OutputCompleteEvent

OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the

Attribute

Remarks

See Also

OutputlD attribute has completed successfully.
This event contains the following attribute:

Attribute Type Description

OutputIlD int32 The ID number of the asynchronous output request that
is complete.

This event is enqueued after the request’s data has been both sent and the
UnifiedPOS Service has confirmation that is was processed by the device
successfully.

“Device Output Models” on page 45.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
96 Common Properties, Methods, and Events

StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.
Attribute This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of
status change.

Release 1.3 and later — Power State Reporting

Power State Reporting, added in Release 1.3, adds additional Status values of:

Value Meaning

SUE_POWER ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
PR_STANDARD or PR_ ADVANCED.

SUE _POWER_OFF The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
PR_ADVANCED.

SUE POWER _OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR ADVANCED.

SUE POWER _OFF OFFLINE
The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at the current power state of
the device.

Release 1.9 and later — Update Firmware Reporting

The Update Firmware capability, added in Release 1.9, adds the following Status
values for communicating the status/progress of an asynchronous update firmware
process:

Value Meaning

SUE_UF_PROGRESS + 1 to 100
The update firmware process has successfully
completed 1 to 100 percent of the total operation.
SUE_UF _COMPLETE The update firmware process has completed

successfully. The value of this constant is identical to
SUE_UF PROGRESS + 100.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces)

97

Remarks

See Also

SUE_UF_COMPLETE DEV_NOT _RESTORED
The update firmware process succeeded, however the
Service and/or the physical device cannot be returned to
the state they were in before the update firmware
process started. The Service has restored all properties
to their default initialization values.
To ensure consistent Service and physical device states,
the application needs to close the Service, then open,
claim, and enable again, and also restore all custom
application settings.

SUE_UF_FAILED DEV_OK
The update firmware process failed but the device is still
operational.

SUE _UF FAILED DEV_UNRECOVERABLE
The update firmware process failed and the device is
neither usable nor recoverable through software. The
device requires service to be returned to an operational
state.

SUE_UF_FAILED DEV_NEEDS_FIRMWARE
The update firmware process failed and the device will
not be operational until another attempt to update the
firmware is successful.

SUE_UF_FAILED DEV_UNKNOWN
The update firmware process failed and the device is in
an indeterminate state.

This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the
application of the device state. This behavior, however, is not required.

“Events” on page 39, “Device Power Reporting Model” on page 46,
CapPowerReporting Property, CapUpdateFirmware Property, PowerNotify
Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 1
98 Common Properties, Methods, and Events

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 2

Bill Acceptor

This Chapter defines the Bill Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 -
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open

100

UnifiedPOS Retail Peripheral Architecture

Chapter 2
Bill Acceptor

Properties (Continued)

Specific
CapDiscrepancy:
CapFullSensor:
CapJamSensor:
CapNearFullSensor:
CapPauseDeposit:
CapRealTimeData:

CurrencyCode:
DepositAmount:
DepositCashList:
DepositCodeList:
DepositCounts:
DepositStatus:
FullStatus:

RealTimeDataEnabled:

Type

boolean
boolean
boolean
boolean
boolean

boolean

string
int32
string
string
string
int32
int32

boolean

Mutability
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}

Version

1.11
1.11
1.11

May Use After
open
open
open
open
open

open

open
open
open
open
open
open, claim, & enable
open, claim, & enable

open, claim & enable

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 101

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): 1.11
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): Not
void { } supported

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific

Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }

endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }

fixDeposit (): 1.11

void { raises-exception, use after open, claim, enable }

pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

Chapter 2

102 Bill Acceptor
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.11

Status: int32 { read-only }
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

103

General Information

The Bill Acceptor programmatic name is “BillAcceptor”.

This device category was added to Version 1.11 of the specification.

Capabilities

The Bill Acceptor has the following capabilities:

Reports the cash units and corresponding unit counts available in the Bill
Acceptor.

Reports jam conditions within the device.

Supports more than one currency.

The Bill Acceptor may also have the following additional capabilities:

Reporting the levels of the Bill Acceptor’s cash units. Conditions which may
be indicated include full, and near full states.

Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

The money (bills) which are deposited into the device between the start and
end of cash acceptance is reported to the application. The contents of the
report are cash units and cash counts.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 2
104 Bill Acceptor

Bill Acceptor Class Diagram

The following diagram shows the relationships between the Bill Acceptor classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
\
\
\
N 4L
<<sends>> \\ <<utility>>
N BillAcceptorConst
<<Interface>> (from upos)
<<event>> BillAcceptorControl <<uses>>
DataEvent (from upos) S
(from events) ®<<capability>> CapDiscrepancy : boolean -7
T~ &<<capability>> CapFullSensor : boolean

=~ [E%<<capability>> CapJamSensor : Boolean

~ _ |B<<capability>> CapNearFullSensor : boolean
<<fireg>> &% <<capability>> CapPauseDeposit : boolean
&}<<capability>> CapRealTimeData : Boolean
&% <<prop>> CurrencyCode : string
&}<<prop>> DepositAmount : int32
- J%<<prop>> DepositCashList : string
&}<<prop>> DepositCodeList : string
l%<<prap>> DepositCounts : string
&}<<prop>> DepositStatus : int32
E5<<prop>> FullStatus : int32

_ ®<<prop>> RealTimeDataEnabled : boolean

<<event>>
DirectlOEvent

(from events)

<<event>> = ®adjustCashCounts(cashCounts : string)
StatusUpdateEvent <<fires>> | [®beginDeposit()
(from events)

®endDeposit(amount : int32)

®fixDeposit()

®pauseDeposit(control : int32)

®readCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

105

Model

The general model of a Bill Acceptor is:

Supports several bill denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

The removal of cash from the device (for example, to empty deposited cash)
is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is BACC STATUS FULL.

Cash acceptance into the “cash acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
pauseDeposit method is executed with a parameter value of

BACC _DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount propertics. When pauseDeposit
method is executed with a parameter value of BACC_DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a

BACC _DEPOSIT_COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 2
106 Bill Acceptor

Bill Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientA - BillAcceptorControl ‘ BillAcceptorSenvice ‘ ‘ _: DataEvent ‘ ‘ Human Actor
| setRealTimeDataEvents(tru D D D

;| setRealTimeDataEvents (tru#) Set so DepositAmount and
U DepositCounts are updated for

T

|

|

|

|

|

|

|

|

|

|

|

" | each Data Event

1

4: beginDeposit()

|
|
|
|
|
|
|
|
|
: 3: beginDeposit()
11:

| I

| 5: initialize DepositAmount and DepositCounts

‘ [m— ‘

| | |

| | |

: | T 6: accept Fash
|

! |

| |

! |

: ! 8: enqueue Data Event for delivery
|

| | P |

: : 9: update DepositAmount and DepositCourhs

| | =— !

|

| : 10: deliver Data Event

|

' 11: notify ClientApp of event

i) J

12: fixDeposit() !

P=a—

15: endDeposit(int32)

16: endDeposit(int32) }

) U

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
7: create Data Event | U
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

u 13: fixDeposit
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
14: updateDeposjtAmount and DepositCouq‘ts
|
|
|
|
|
|
|
|
|
|

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 107

Bill Acceptor State Diagram

Claimed

clearlpput

Enabled

readCashCo@

clearlnput Clearlnput processing
entry/ empty data queue

earlnput

beginDeposit
Fix Mode

entry/ sync DepostAmount and DepositCount

Cash Acceptance

fixDeposi fixDeposit
entry/ DepositAmount = 0
entry/ DepositCount = 0
Pause Mode
pauseDerlosi - oS R S?Rw‘lsync DepostAmount and DepositCount
has room
h
payiseDeposit(BACCA OSIT_PAUSE)

adjustCashCourt

%

adjustCashCounts /

Device Sharing

The Bill Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

108

UnifiedPOS Retail Peripheral Architecture Chapter 2
Bill Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Bill Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the bill acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Bill Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 109

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Bill Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

RealTimeDataEnabled Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Bill Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

110

UnifiedPOS Retail Peripheral Architecture Chapter 2
Bill Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Bill
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the ASCII
semicolon character (*‘;”) followed by ASCII numeric comma delimited values for
the bills that can be used with the Bill Acceptor. The semicolon (*;”) is present to

denote the start of bills when integrated within the bill dispenser
Below are sample DepositCashList values in Japan.

* *1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property, DepositCodeList Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis alist of ASCII three-character [SO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Bill Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property, DepositCashList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 111

DepositCounts Property

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the bill acceptor. Cash units inside the
string are the same as the DepositCashList property, and are in the same order.
For example if the currency is Japanese yen and string of the DepositCounts
property is set to:

1000:80,5000:77,10000:0,50000:54,100:0,500000:87

After the call to the beginDeposit method, there would be 80 one thousand yen
bills, 77 five thousand yen bills, 54 fifty thousand yen bills, and 87 five hundred
thousand yen bills in the Bill Acceptor.

This property is initialized to zero by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

BACC_STATUS DEPOSIT START
Cash acceptance started.

BACC_STATUS DEPOSIT _END
Cash acceptance stopped.

BACC _STATUS_DEPOSIT COUNT
Counting or repaying the deposited money.

BACC_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to BACC_STATUS DEPOSIT_END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

112

UnifiedPOS Retail Peripheral Architecture Chapter 2
Bill Acceptor

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

BACC STATUS OK All cash slots are neither nearly full nor full.
BACC _STATUS FULL Some cash slots are full.
BACC STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 113

Methods (UML operations)

adjustCashCounts Method

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1000:80,5000:77,10000:0,50000:54,100:0,500000:87

as a result of calling the adjustCashCounts method, then there would be 80 one
thousand yen bills, 77 five thousand yen bills, 54 fifty thousand yen bills, and 87
five hundred thousand yen bills in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

readCashCounts Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

114

UnifiedPOS Retail Peripheral Architecture Chapter 2
Bill Acceptor

beginDeposit Method

Syntax

Remarks

Errors

See Also

beginDeposit ():
void { raises-exception, use after open-claim-enable }

Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

e The DepositAmount property is set to zero.

After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The call sequence is not correct.

DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.

endDeposit Method

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

BACC_DEPOSIT COMPLETE The deposit is accepted and the mode is
complete.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 115

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Bill Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
e The call sequence is invalid. beginDeposit must be
called before calling this method.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:
Parameter Description

BACC DEPOSIT PAUSE Cash acceptance is paused.
BACC DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is BACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to BACC_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Bill Acceptor. The property
values are not changed again until the deposit process is resumed.

If control is BACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to BACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
BACC _DEPOSIT RESTART.

DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 2
116 Bill Acceptor

readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1000:80,5000:77,10000:0,50000:54,100:0,500000:87

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills, 77 five thousand yen bills, 54 fifty thousand yen bills, and 87
five hundred thousand yen bills in the Bill Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also DepositCashList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 117

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when the Bill Acceptor has accepted a bill.
This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: in#32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Bill Acceptor Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Acceptor devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 2
118 Bill Acceptor

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill
Acceptor device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
The Status parameter contains the Bill Acceptor status condition:

Value Meaning

BACC _STATUS FULL Some cash slots are full.

BACC STATUS NEARFULL Some cash slots are nearly full.

BACC STATUS FULLOK No cash slots are either full or nearly full.
BACC_STATUS JAM A mechanical fault has occurred.

BACC STATUS JAMOK A mechanical fault has recovered.

Remarks Fired when the Bill Acceptor detects a status change.

For changes in the fullness levels, the Bill Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 3

Bill Dispenser

This Chapter defines the Bill Dispenser device category.

Summary

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:
DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{read-write}
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}

{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version
1.11
1.11
1.11
1.11
1.11
1.11

May Use After
Not Supported
open
open
open
open
open
open
open
Not Supported
Not Supported
open & claim
open
Not Supported
open
open

open
open
open

open

120

UnifiedPOS Retail Peripheral Architecture

Chapter 3
Bill Dispenser

Properties (Continued)

Specific
CapDiscrepancy:
CapEmptySensor:
CapJamSensor:

CapNearEmptySensor:

AsyncMode:
AsyncResultCode:

AsyncResultCodeExtended:

CurrencyCashList:
CurrencyCode:
CurrencyCodeList:
CurrentExit:
DeviceExits:
DeviceStatus:

ExitCashList:

Type

boolean
boolean
boolean

boolean

boolean
int32
int32

string
string
string
int32
int32
int32

string

Mutability
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}
{read-only}

{read-only}

{read-only}
{read-write}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}

Version

May Use After
open
open
open

open

open
open, claim, & enable

open, claim, & enable

open
open
open
open
open
open, claim, & enable

open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 121

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.11
void { raises-exception }

close (): 1.11
void { raises-exception, use after open }

claim (timeout: int32): 1.11
void { raises-exception, use after open }

release (): 1.11
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }

clearInput (): Not sup-
void { raises-exception, use after open, claim } ported

clearInputProperties (): Not
void { } supported

clearOutput (): 1.11
void { }

directIO (command: int32, inout data: int32, inout obj: object): 1.11

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }

Specific
Name

adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

dispenseCash (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 3
122 Bill Dispenser
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.11

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.11

Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 123

General Information

The Bill Dispenser programmatic name is “BillDispenser”.
This device category was added in Version 1.11 of the specification.

Capabilities

The Bill Dispenser has the following capabilities:

* Reports the cash units and corresponding unit counts available in the Bill
Dispenser.

» Dispenses a specified number of cash units from the device in bills into a user-
specified exit.

* Reports jam conditions within the device.

e Supports more than one currency.

The Bill Dispenser may also have the following additional capabilities:
* Reporting the fullness levels of the Bill Dispenser’s cash units. Conditions
which may be indicated include empty and near empty states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 3
124 Bill Dispenser

Bill Dispenser Class Diagram

The following diagram shows the relationships between the Bill Dispenser classes.

<<exception>> <<utility>>
UposException UposConst
(from upos) (from upos)
N
N
N T

. |

N
<<sends>> \ ‘

<<Interface>> |

BillDispenserControl <<utility>>
(from upos) BillDispenserConst
B<<capability>> CapDiscrepancy: boolean <<uges>> (from upos)
B¥<<capability>> CapEmptySens or : boolean
%«capability» CapJamSensor : Boolean _

B<<capability>> CapNearEm ptySensor : boolean
B<<prop>> AsyncMode : boolean

B<<prop>> AsyncRes ultCode : int32
B<<prop>> AsyncRes ultCodeExtended :int32

<<event>> B¥<<prop>> CurrencyCashList : string
DirectlOEvent B¥<<prop>> CurrencyCode : string
(from events) T 7 7~ =~~~ — ~|<<prop>> CurrencyCodeList : string

&j<<prop>> CurrentExit: int32
<<fires>> B5<<prop>> DeviceEnits : int32
B5<<prop>> DeviceStatus : int32
B<<prop>> ExitCashList : string

<<event>> -
StatusUpdateEvent

(from events)

®adjustCashCounts(cashCounts : string)

<«<fres>> $beginDeposit()

®dispenseCas h(cash Counts : string)
®dispenseChange(amount : int32)

®endDeposit(amount :int32)

SfixDeposit()

®pauseDeposit(control : int32)
®readCashCounts(cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

125

Model

The general model of a Bill Dispenser is:

Supports several bill denominations. The supported bill denomination for a
particular currency is noted by the list of cash units in the CurrencyCashList

property.
Consists of any combination of features to aid in the cash processing functions
such as a number of slots or bins which can hold the cash, and cash exits.

This specification provides programmatic control only for the dispensing of
cash. The accepting of cash by the device (for example, to replenish cash) is
controlled by the adjustCashCounts method, unless the device can determine
the amount of cash on its own. The application can call readCashCounts to
retrieve the current unit count for each cash unit, but cannot control when or
how cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

Dispenses cash into the exit specified by CurrentExit when dispenseCash is
called. With dispenseCash, the application specifies a count of each cash unit
to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by dispenseCash, then
the method is performed asynchronously and its completion is indicated by a
StatusUpdateEvent with its Data property set to BDSP_STATUS ASYNC.
The request’s completion status is set in the AsyncResultCode and
AsyncResultCodeExtended properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Bill Dispenser operations is illegal; only one
asynchronous method can be processed at a time.

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 3
126 Bill Dispenser

e May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

* Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status. If there are one or more empty cash slots,
then DeviceStatus is BDSP_ STATUS EMPTY.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 127

Bill Dispenser Sequence Diagram

claimed and enabled the device

NOTE: We are assuming the clienApp has already successfully opened, ﬁ

::ClientApp : BillDispenserControl ::BillDispenserSenice : StatusUpdateEvent

|
| 1
1: dispenseCash(string) : ‘
|
2: dispenseCash(string) |

Assume Bill
/U ~ ~ | Dispenser is

getting low

=1

4: create new SUE Event

5: deliver SUE to control U

| |
| |
| |
| |
|
|
|
| |
| |
| |
|] |
| | | |
| | |
| | | |
: 3: updat‘e deviceStatus to BDSP_STATPS_NEAREMPTY (CapNearErinptySensor = true)
| | |
| | |
| | |
| | |
| |
| |
| |
|
[
|

6: 'notify ClientApp of new event

U

e

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 3
128 Bill Dispenser

Bill Dispenser State Diagram

Claimed

release

s¢tDeviceEnabled(false)

setDeviceEnabléd(trug

Enabled
setAsyncMode(false)

Near Empty

S€) Has Bills

T N%
=N
[W}
A
adCashCounts

ynchronous

Asynchronous

jams

Jammed

Device Sharing

The Bill Dispenser is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* Theapplication must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 129

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash method will be performed asynchronously. If false, this
method will be performed synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property, dispenseCash Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: int32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash was called with AsyncMode true).

This property is set before a StatusUpdateEvent is delivered with a Status value
of BDSP_STATUS_ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property, dispenseCash Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

130

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Dispenser

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

readCashCounts Method.

CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DeviceStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Bill Dispenser can report the occurrence of a mechanical fault in the
Bill Dispenser.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Bill Dispenser can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 131

CurrencyCashList Property

Syntax

Remarks

Errors

See Also

CurrencyCashList: string { read-only, access after open }

Holds the cash units supported in the Bill Dispenser for the currency represented
by the CurrencyCode property.

The string consists of an ASCII semicolon character (*;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Bill Dispenser.

The semicolon (*;”) is present to indicate the units are bills. This is used for
merging multiple device services into the Cash Changer.

Below are sample CurrencyCashList values in Japan.
« %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }

Contains the active currency code to be used by Bill Dispenser operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

CurrencyCodeList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

132

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Dispenser

CurrencyCodelList Property

Syntax

Remarks

Errors

See Also

CurrencyCodeList: string { read-only, access after open }

Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Bill Dispenser supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater than 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

» Bill Dispenser supports bills; an auxiliary exit is used for larger quantities
of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits =2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentExit value was specified.
CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 133

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Bill Dispenser. It may be one of the following:

Value Meaning
BDSP_STATUS OK The current condition of the Bill Dispenser is
satisfactory.

BDSP_STATUS_EMPTY

Some cash slots are empty.
BDSP_STATUS NEAREMPTY

Some cash slots are nearly empty.
BDSP_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

ExitCashList Property

Syntax
Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

134

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Dispenser

Methods (UML operations)

adjustCashCounts Method

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Bill Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:
1000:80,5000:77,10000:0,50000:54,100:0,500000:87

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills, 77 five thousand yen bills, 54 fifty thousand yen bills, and 87
five hundred thousand yen bills in the Bill Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be initialized because an
asynchronous method is outstanding.

readCashCounts Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 135

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of ““;cash unit:cash counts,, cash unit:cash counts”.

6.9

Units must be preceded by ““;” to represent bills.

Dispenses the cash from the Bill Dispenser into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ 51000:10”
Dispense 10 one thousand yen bills.

e 51000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
E _EXTENDED ErrorCodeExtended = EBDSP_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

136

UnifiedPOS Retail Peripheral Architecture Chapter 3
Bill Dispenser

readCashCounts Method

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:
1000:80,5000:77,10000:0,50000:54,100:0,500000:87

as a result of calling the readCashCounts method, then there would be 80 one
thousand yen bills, 77 five thousand yen bills, 54 fifty thousand yen bills, and 87
five hundred thousand yen bills in the Bill Dispenser.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Bill Dispenser. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Bill Dispenser. An example would be
when a bill dispenser has diverted unusable bill to a holding area.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 137

Events (UML interfaces)

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DirectiIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Bill Dispenser Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bill Dispenser devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 3
138 Bill Dispenser

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Bill
Dispenser device.

Attributes This event contains the following attribute:
Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
The Status parameter contains the Bill Dispenser status condition:

Value Meaning

BDSP STATUS EMPTY Some cash slots are empty.

BDSP_STATUS NEAREMPTY Some cash slots are nearly empty.

BDSP_STATUS _EMPTYOK No cash slots are either empty or nearly
empty.

BDSP STATUS JAM A mechanical fault has occurred.

BDSP_STATUS JAMOK A mechanical fault has recovered.

BDSP_STATUS_ASYNC Asynchronously performed method has
completed.

Remarks Fired when the Bill Dispenser detects a status change.

For changes in the fullness levels, the Bill Dispenser is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page 39

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 4

Biometrics

Summary

This Chapter defines the Biometrics device category.

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open

Not Supported
open

open

140

UnifiedPOS Retail Peripheral Architecture

Chapter 4
Biometrics

Properties (Continued)

Specific:

Algorithm:
AlgorithmList:

BIR:
CapPrematchData:
CapRawSensorData:
CapRealTimeData:
CapSensorColor:
CapSensorOrientation:

CapSensorType:

CapTemplateAdaptation:

RawSensorData:
RealTimeDataEnabled:
SensorBPP:
SensorColor:
SensorHeight:
SensorOrientation:
SensorType:
SensorWidth:

Type
int32
string
binary
boolean
boolean
boolean
int32
int32
int32

boolean
binary
boolean
int32
int32
int32
int32
int32
int32

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-write }
{ read-write }

{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open & claim
open
open & claim
open
open
open
open
open

open

open
open & claim
open
open
open
open
open, claim, & enable
open, claim, & enable

open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 141

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.10
void { raises-exception }

close (): 1.10
void { raises-exception, use after open }

claim (timeout: int32): 1.10
void { raises-exception, use after open }

release (): 1.10
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }

clearInput (): 1.10
void { raises-exception, use after open, claim }

clearInputProperties (): 1.10
void { raises-exception, use after open, claim }

clearOQutput (): Not
void { } supported

directIO (command: int32, inout data: int32, inout obj: object): 1.10

void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

Specific Updated in Release 1.11

Name

beginEnrollCapture (referenceBIR: binary, payload: binary): 1.10
void { raises-exception, use after open, claim, enable }

beginVerifyCapture (): 1.10
void { raises-exception, use after open, claim, enable }

endCapture (): 1.10
void { raises-exception, use after open, claim, enable }

identify (maxFARRequested: int32, maxFRRRequested: int32, 1.11

FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4
142 Biometrics

identifyMatch (maxFARRequested: in732, maxFRRRequested: inz32, 1.11
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open, claim, enable }

processPrematchData (capturedBIR: binary, prematchDataBIR: binary, 1.10
inout processedBIR: binary):

void { raises-exception, use after open, claim, enable }
verify (maxFARRequested: inz32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved:
int32, inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }
verifyMatch (maxFARRequested: int32, maxFRRRequested: int32, 1.10
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32,
inout FRRAchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

143

General Information

The Biometrics programmatic name is “Biometrics”.
This device was introduced in Version 1.10 of this specification.

Capabilities

All Biometric devices have the following capabilities:

The device captures biometrics data from a biometrics sensor. The biometrics
data is in the form of a Biometrics Information Record (BIR) containing one
or more Biometrics Data Blocks (BDB) which in turn contain one or more
biometric data samples or biometric templates.

This standard uses the term template (as adapted from the BioAPI') to refer
to the biometric enrollment data for a user. The term biometric information
record (BIR) refers to any biometric data that is returned to the application;
including raw data, intermediate data, processed sample(s) ready for
verification or identification, as well as enrollment data. Typically, the only
data stored persistently by the application is the BIR generated for enrollment
(i.e., the template). The format of the Opaque Biometric Data Block (BDB) is
indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is
optional, and may be used to ensure integrity of the data during transmission
and storage. When present, it is calculated on the Header + BDB. For
standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats
(all that exists at the present time), the signature can take any form that suits
the Service. For this reason, there is no C structure definition of the signature.
The BIR Data Type indicates whether the BIR is signed and/or encrypted.

1 BioAPI is defined by the BioAPI consortium (www.bioapi.org).

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4

144

Biometrics

Length Header | BIR Data CQuality Purpose

‘Opagque” Digital
Headsr Biometric Data Block Signature
Format ID

Biometric Type
(Header + BDE) Wersion Type Cwner Type ¥P
4 1 1 2 2 1 1 4
< Product ID) .
Creation | Creation | Subtype | Index Index

Date Time Flag (unoy

Owner Type

2 2 4 3 1 1 16

The Device captures Biometric data for the purposes of enrollment. The
notion of enrollment requires a higher level of quality for the final BIR that is
created. Generally, the BIR will be the aggregation of series of biometric
captures.

The Device captures Biometric data for the purposes of verification.
Verification does not require the same level of quality as enrollment.

The Device has the ability to determine if two BIRs match within the degree
of error specified by the False Accept Rate (FAR) and False Reject Rate
(FRR). The FAR is the margin of percentage error acceptable that two non-
matching biometric samples will be falsely deemed to match. The FRR is the
margin of percentage error acceptable that two matching biometric samples
will be falsely deemed not to match.

The Device has the ability to compare a BIR against a sample population of
BIRs and create a rank ordering of the population for identification purposes.

Some Biometrics Device may have the following additional capabilities:

The Device Returns the raw biometric data in “real time” as it is captured by
the device. If this capability is true and has been enabled by application by
setting the RealTimeDataEnabled property to true, then a series of
StatusUpdateEvents are enqueued, each as a raw image defined by
SensorBPP, SensorColor, SensorHeight, and SensorWidth representing a
partial biometrics image capture.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 145

Biometrics Class Diagram

The following diagram shows the relationships between the Biometrics classes.

«exception» «sends» «interface» «uses» «utility»
UposException BaseControl UposConst

«utility»
BiometricsConst

«sends» «uses»

«interface»
BiometricsControl

+Algorithm : int32
+AlgorithmList : string
+BIR : binary
+CapPrematchData : boolean
+CapRawSensorData : boolean
+CapRealTimeData : boolean
+CapSensorColor : int32
+CapSensorOrientation : int32
+CapSensorType : int32
+CapTemplateAdaption : boolean
+RawSensorData : binary
+RealTimeDataEnabled : boolean
+SensorBPP : int32
+SensorColor : int32
+SensorHeight : int32
+SensorOrientation : int32
+SensorType : int32
+SensorWidth : int32
+beginEnrollCapture() : void
+beginVerifyCapture() : void
+endCapture() : void

Note: Method parameters are

not listed due to space +identify() : void
limitations - refer to the +identifyMatch() : void
Methods section for details. +processPrematchData() : void

+verify() : void
+verifyMatch() : void

T

|

|

|

I

| |
«fires» |
|

|

|

|

|
«fires» «fires» } «fires»
e B ! b :
| } ! |
! ‘ 1 !
N2 | ! N
«eventy» «event» «eventy «event»
DataEvent DirectlOEvent ErrorEvent StatusUpdateEvent|
+Status : int32 +EventNumber : int32 +ErrorCode : int32 +Status : int32
+Data : int32 +ErrorCodeExtended : int32
+Obj : object +ErrorLocus : int32
+ErrorResponse : int32

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4

146

Biometrics

Model

The Biometrics device usage model is:

Open and claim the device.
Enable the device and set the property DataEventEnabled to true.

Begin capturing biometrics data by calling on of the following asynchronous
methods beginVerifyCapture or beginEnrollCapture. These methods
activate the biometrics sensor to begin acquiring the biometrics data in the
relevant manner for the particular biometrics device. The result biometric
data is stored in the BIR property. The BIR data can be provided to the
identifyMatch method and verifyMatch method for comparison and
matching purposes. The archival process of the BIR for future verification is
application dependent.

Perform synchronous biometric verifications through the verify method or
synchronous biometric identifications through the identify method.

If the device is capable of supplying biometrics data in real time as the
biometric sample is captured (CapRealTimeData is true), and if
RealTimeDataEnabled is true, the biometrics data is presented to the
application as a series of partial biometric data through the RawSensorData
property and notified to the application through StatusUpdateEvents until
the biometric sample is fully acquired. RawSensorData is not queued rather
it is up to the application to capture the data upon receiving the
StatusUpdateEvent.

The Biometrics Device follows the general “Device Input Model” for event-
driven input:

When input is received by the Service, it enqueues a DataEvent.

If AutoDisable is true, then the Device automatically disables itself when a
DataEvent is enqueued.

A queued DataEvent can be delivered to the application when the property
DataEventEnabled is true and other event delivery requirements are met.
Just before delivering this event, data is copied into properties, and further
data events are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the
current input and associated properties. When the application has finished
processing the current input and is ready for more data, it re-enables events
by setting DataEventEnabled to true.

An ErrorEvent (or events) is enqueued if the an error occurs while gathering
or processing input, and is delivered to the application when
DataEventEnabled is true and other event delivery requirements are met.
The DataCount property may be read to obtain the number of queued
DataEvents.

All enqueued input may be deleted by calling clearInput. See the clearInput
method description for more details.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

147

Deviations from the general “Device Input Model” for event-driven input are:
* The capture of biometrics data begins when beginEnrollCapture or
beginVerifyCapture is called.

* Ifbiometrics capture is terminated by calling endCapture, then no
DataEvent or ErrorEvent will be enqueued.

Device Sharing

The Biometrics is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Biometrics specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device or before changing some writable properties.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4
148 Biometrics

Biometrics Sequence Diagrams

The following diagram illustrates the enrollment sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.
Application Biometrics Control Biometrics Service Hardware

Il I I Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginEnrollCapture()

4: beginEnrollCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

‘\::; 13: BIR data persisted
k-

—_——— - —— — — — A

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 149

The following diagram illustrates the verify sequence for the Biometrics device
category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Sel

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides a set of enroliment BIRs from which a match is to be found.

13: verify()

14: verify()

15: Hardware compares each enrollment BIR against the verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

—_— —

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4
150 Biometrics

The following diagram illustrates the verify - match sequence for the Biometrics
device category.

NOTE: Assumes that the Applciation has already successfully opened, claimed and enabled the control and is registered to receive events from the control.

Application Biometrics Control Biometrics Service Hardware

I I Il Il

1: setDataEventEnabled(true)

2: setDataEventEnabled(true)

3: beginVerifyCapture()

4: beginVerifyCapture()

5: Enable hardware capture

6: Data captured and delivered

7: Create and fire a Data Event

8: Data Event delivered
9: getBIR()

10: getBIR()

11: BIR data returned

12: BIR data returned

The application provides the enroliment BIR of the user to verify.

13: verifyMatch()

14: verifyMatch()

15: Hardware compares enroliment BIR against verify BIR

16: Hardware returns match data

17: Return status and match data

18: Return status and match data

- — —

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

151

Biometrics State Diagram

The following diagram illustrates the various state transitions within the

Biometrics device category.

/ close()
/ open() / claim()
Closed]/ / close() /[Opened]/ / release() /[Claimed
N~
/ close() / release() | setDeviceEnabled(true),

Enroll Capture

/ identify ()

Identify

Identify Matching

/ beginEnrollCapture()
~
/ endCapture()
~—

/ DataEvent fired

/ identifyMatcy

|/ setDeviceEnabled(false)

/ beginVerifyCapture() Verify Capture
pture()

/ DataEvent fired

/ processPrematchData()

Preprocess Data

[verifyMatch()

/ verify()

Verify Matching

UnifiedPOS Version 1.11 -- Released January 15, 2007

152

UnifiedPOS Retail Peripheral Architecture Chapter 4
Biometrics

Properties (UML Attributes)

Algorithm Property

Syntax

Remarks

Errors

See Also

Algorithm: in#32 { read-write, access after open-claim }

Contains the biometric algorithm currently in use for generating the biometrics
template. The values can be set to index the values contained in AlgorithmList.
For example:

Value Meaning

0 Default value

1 First algorithm in AlgorithmList

2 Second algorithm in AlgorithmList, etc.

Note: This property can only be updated when the device is opened and claimed,
but not enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AlgorithmList Property.

AlgorithmList Property

Syntax
Remarks

Errors

See Also

BIR Property 2
Syntax

Remarks

AlgorithmList: string { read-only, access after open }
Contains the comma-delimited list of algorithms that are supported by the device.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Algorithm Property.

BIR: binary { read-only, access after open-claim-enable }3

This standard uses the term template to refer to the biometric enrollment data for
a user. The term biometric information record (BIR) refers to any biometric data
that is returned to the application; including raw data, intermediate data, processed
sample(s) ready for verification or identification, as well as enrollment data.
Typically, the only data stored persistently by the application is the BIR generated
for enrollment (i.e., the template). The format of the Opaque Biometric Data Block
(BDB) is indicated by the Format field of the Header. This may be a standard or
proprietary format. The BDB may be encrypted. The digital signature is optional,
and may be used to ensure integrity of the data during transmission and storage.
When present, it is calculated on the Header + BDB.

2 Biometrics Information Record (BIR) was originally defined by the BioAPI
consortium (wWww.bioapi.org).

3 In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 153

For standardized BIR formats, the signature will take a standard form (to be
determined when the format is standardized). For proprietary BIR formats (all that
exists at the present time), the signature can take any form that suits the Service.
For this reason, there is no C structure definition of the signature. The BIR Data
Type indicates whether the BIR is signed and/or encrypted.

Processed biometric data obtained through the methods beginEnrollCapture,
beginVerifyCapture, and verify are stored in this property upon successful
completion.

4

< Product ID))
Creation | Creation | Subtype | Index Index

Header "Opaque” Digital
Biometric Data Block Signature
Length Head BIR Da Format 10
£ng eader 1a Qualit Purpose | Biometric Type
(Header + BDE) Version Type Owner Type ¥ P s
1 1 2 2 1 1 4

Date Time Flag (LIDy

Cwner Type

2 2 4 3 1 1 16

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also beginEnrollCapture Method, beginVerifyCapture Method, verify Method.

CapPrematchData Property Updated in Release 1.11

Syntax CapPrematchData: boolean { read-only, access after open }

Remarks If true, the Service is capable of using MOC (Match-On-Card) SmartCard
technology to generate a processed BIR based on prematch data stored on a
SmartCard.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also processPrematchData Method.

CapRawSensorData Property

Syntax

Remarks

Errors

CapRawSensorData: boolean { read-only, access after open }

If true, the Service is able to return unprocessed raw data from the biometrics
sensor.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

154

UnifiedPOS Retail Peripheral Architecture Chapter 4

Biometrics

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }

If true, the device is able to supply raw biometrics data as the biometrics
information is being captured (“real time”).

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

RawSensorData Property, SensorBPP Property, SensorColor Property,
SensorHeight Property, SensorWidth Property.

CapSensorColor Property

Syntax

Remarks

Errors

CapSensorColor: int32 { read-only, access after open }

This capability indicates if this device supports image formats other than bi-tonal.
CapSensorColor is a logical OR combination of any of the following values:

Value Meaning

BIO_CSC_MONO
BIO_CSC_GRAYSCALE
BIO_CSC_16

BIO_CSC 256
BIO_CSC_FULL

Bi-tonal (B/W)
Gray scale

16 Colors

256 Colors

Full colors

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapSensorOrientation Property

Syntax

Remarks

Errors

CapSensorOrientation: int32 { read-only, access after open }

This capability indicates the ability of the sensor image to be rotated prior to
processing. CapSensorQOrientation is a logical OR combination of any of the
following values:

Value Meaning
BIO_CSO_NORMAL 0°
BIO_CSO_RIGHT 90°
BIO_CSO_INVERTED 180°

BIO _CSO_LEFT 270°

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 155

CapSensorType Property Updated in Release 1.11
Syntax CapSensorType: int32 { read-only, access after open-claim-enable }
Remarks This capability indicates the types of biometrics data that can be captured by the

attached sensor. CapSensorType is a logical OR combination of any of the
following values:
Value Meaning
BIO CST FACIAL FEATURES Facial Features/Topography
BIO _CST_VOICE Voice
BIO _CST FINGERPRINT Fingerprint
BIO_CST _IRIS Iris
BIO _CST RETINA Retina
BIO_CST HAND_ GEOMETRY Hand Geometry
BIO _CST SIGNATURE DYNAMICS Signature
BIO CST KEYSTROKE DYNAMICS Keystrokes
BIO_CST_LIP. MOVEMENT Lip Movement
BIO_CST THERMAL FACE IMAGE Face Image
BIO CST THERMAL HAND IMAGE Hand Image
BIO _CST GAIT Gait/Stride
BIO_CST PASSWORD Password
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
See Also SensorType Property.

CapTemplateAdaptation Property

Syntax
Remarks

Errors

See Also

CapTemplateAdaptation: boolean { read-only, access after open }

If true, the Service is able to return an adapted BIR that is the result of updating a
reference BIR with information taken from a sample BIR or capture BIR. The
purpose of this adaptation is to keep the reference BIR current as biometric data
shifts over time.

Note: This capability must be populated after open, claim, and enable because it
is dependent on the selected Algorithm.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Algorithm Property, BIR Property, Verify Method, VerifyMatch Method.

RawSensorData Property

Syntax
Remarks

RawSensorData: binary { read-only, access after open-claim-enable }4

Holds the biometrics image data as raw pixel data scan lines from the top, left to
the bottom, right. SensorHeight and SensorWidth define the number of pixels.
SensorBPP defines the number of bits per pixel. SensorColor defines the
interpretation of the pixel data.

4 In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

156

UnifiedPOS Retail Peripheral Architecture Chapter 4
Biometrics

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapRealTimeData Property, RealTimeDataEnabled Property, SensorBPP
Property, SensorColor Property, SensorHeight Property, SensorWidth
Property.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean { read-write, access after open }

If true and CapRealTimeData is true, a series of partial biometric data events is
enqueued as the biometric is captured until biometric capture is terminated.
Otherwise, the captured biometric data is enqueued as a single
StatusUpdateEvent when biometric capture is terminated.

Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginEnrollCapture or beginVerifyCapture method is
performed. This prevents confusion regarding what would happen if it were
modified between a beginEnrollCapture - endCapture or beginVerifyCapture
- endCapture pairing.

Note: This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL Cannot set to true because CapRealTimeData
is false.

CapRealTimeData Property, RawSensorData Property, SensorBPP Property,
SensorColor Property, SensorHeight Property, SensorWidth Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

SensorBPP Property

Syntax SensorBPP: int32 { read-only, access after open }
Remarks Holds the Bit Per Pixel (BPP) encoding of the RawSensorData.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
SensorColor Property Updated in Release 1.11
Syntax SensorColor: int32 { read-write, access after open }
Remarks This property is used to select the image capture mode for subsequent biometric

capture operations. Certain SensorType devices may not work with all the
“colors” or color image type may not make sense. Changing the SensorColor
property will not affect any previously stored data currently residing in the
RawSensorData property or BIR property.

It may contain one of the following values:

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 157
Value Meaning
BIO_SC_MONO Bi-tonal (B/W)
BIO _SC GRAYSCALE Gray scale
BIO SC 16 16 Colors
BIO _SC 256 256 Colors
BIO _SC FULL Full color

Errors

This property can only be set to a value if the value is defined in CapSensorColor.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

See Also

Invalid sensor color specified. See
CapSensorColor.

CapSensorColor Property, RawSensorData Property, Sensor BPP Property,

SensorHeight Property, SensorWidth Property.

SensorHeight Property

Syntax SensorHeight: int32 { read-only, access after open }

Remarks

Holds the height of the RawSensorData in pixels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

SensorOrientation Property

Updated in Release 1.11

Syntax SensorOrientation: int32 { read-write, access after open-claim }
Remarks Holds the requested orientation adjustment to the received sensor data prior to BIR
creation.
Value Meaning
BIO_SO NORMAL 0°
BIO SO _RIGHT 90°
BIO SO _INVERTED 180°
BIO SO _LEFT 270°

Errors

See Also

Note: This property can only be updated when the device is opened and claimed,
but not enabled.

This property can only be set to a value if the value is defined in
CapSensorOQOrientation.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid sensor orientation specified. See

CapSensorQOrientation.

CapSensorOrientation Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

158

UnifiedPOS Retail Peripheral Architecture

Chapter 4
Biometrics

SensorType Property

Syntax

Remarks

Errors

See Also

Updated in Release 1.11

SensorType: int32 { read-write, access after open-claim-enable }

Holds the type of biometrics sensor being accessed.

Value Meaning

BIO ST FACIAL FEATURES Facial Topography
BIO ST VOICE Voice

BIO ST FINGERPRINT Fingerprint

BIO ST IRIS Iris

BIO ST RETINA Retina

BIO_ ST HAND GEOMETRY Hand Geometry
BIO ST SIGNATURE DYNAMICS Signature

BIO ST KEYSTROKE DYNAMICS Keystrokes

BIO ST LIP MOVEMENT

BIO ST THERMAL FACE IMAGE
BIO ST THERMAL HAND IMAGE
BIO_ST GAIT

BIO_ST PASSWORD

Lip Movement
Thermal Face Image
Thermal Hand Image
Gait/Stride

Password

This property can only be set to a value if the value is defined in CapSensorType.

A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Invalid sensor type specified. See
CapSensorType.

CapSensorType Property.

SensorWidth Property

Syntax
Remarks

Errors

See Also

SensorWidth: int32 { read-only, access after open }

Holds the width of the RawSensorData in pixels.

A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

RawSensorData Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 159

Methods (UML operations)

beginEnroliCapture Method Updated in Release 1.11

Syntax beginEnrollCapture (referenceBIR: binary, payload: binary):
void { raises-exception, use after open-claim-enable }

Parameter Description

referenceBIR’ Optional BIR to be adapted (updated). This parameter is
ignored, if EMPTY.

payload® Data that will be stored by the BSP. This parameter is

ignored, if EMPTY.

Remarks Starts capturing biometrics data for purposes of enrollment. Although not
required, enrollment captures customarily result in a series of biometrics data
captures whose aggregation form the final BIR. Optionally if
CapTemplateAdaptation is true, a referenceBIR can be provided for adaptation
with the enrollment. If a payload is provided that data is added into the resulting
BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E _FAILURE referenceBIR could not be adapted.
E ILLEGAL Biometrics capture is already in progress.

See Also BIR Property, CapTemplateAdaptation Property, endCapture Method.

beginVerifyCapture Method Updated in Release 1.11
Syntax beginVerifyCapture ():

void { raises-exception, use after open-claim-enable }

Remarks Starts capturing biometrics data for the purposes of verification. The resulting
processed data is stored in the BIR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture is already in progress.
See Also BIR Property, endCapture Method.

> In the OPOS environment, the format of referenceBIR and payload depends upon
the value of the BinaryConversion property. See BinaryConversion property on
page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

160

UnifiedPOS Retail Peripheral Architecture Chapter 4
Biometrics

endCapture Method

Syntax

Remarks

Errors

See Also

identify Method

Syntax

endCapture():
void { raises-exception, use after open-claim-enable }

Stops (terminates) capturing biometrics data.

If RealTimeDataEnabled is false and biometrics data was captured, then it is
placed in the properties BIR and RawSensorData. If no biometrics data was
captured, then BIR and RawSensorData are EMPTY.

If RealTimeDataEnabled is true and there is biometric data remaining which
have not been delivered to the application by a StatusUpdateEvent, then the
remaining biometric data is placed into the properties BIR and RawSensorData.
If no biometrics data was captured or all biometric data has been delivered to the
application, then BIR and RawSensorData are EMPTY.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Biometrics capture was not in progress.

BIR Property, RawSensorData Property, RealTimeDataEnabled Property,
beginEnrollCapture Method, beginVerifyCapture Method, DataEvent.

Updated in Release 1.11

identify (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIRPopulation: array of binary, inout
candidateRanking: int32 array, timeout: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification.

maxFRRRequested The requested FRR criterion for successful verification.
An EMPTY pointer indicates that this criterion is not
provided.

FARPrecedence If both criteria are provided, this parameter indicates

which takes precedence. BIO FAR_PRECEDENCE
indicates that maxFARRequested takes precedence,
BIO FRR PRECEDENCE indicates that
maxFRRRequested takes precedence.

referenceBIR Population®
An array of BIRs against which the Identify match is

performed.
candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.
timeout Maximum number of milliseconds to attempt a

successful biometric capture before failing.

% In the OPOS environment, the format of referenceBIRPopulation depends upon the

value of the BinaryConversion property. See BinaryConversion property on page
A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 161

Remarks This function captures biometric data from the attached device within the allotted
timeout, and compares it against a set of referenceBIRPopulation. It then returns a
rank ordered array of referenceBIRPopulation indices in candidateRanking.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL referenceBIRPopulation was not valid or Biometrics
capture is in progress.

E TIMEOUT The specified timeout has elapsed before biometric data
was captured.

identifyMatch Method Updated in Release 1.11

Syntax identifyMatch (maxFARRequested: inf32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIRPopulation:
array of binary, inout candidateRanking: int32 array):

void { raises-exception, use after open-claim-enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification.

maxFRRRequested The requested FRR criterion for successful verification.
An EMPTY pointer indicates that this criterion is not
provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO_ FAR PRECEDENCE
indicates that maxFARRequested takes precedence,
BIO_FRR PRECEDENCE indicates that
maxFRRRequested takes precedence.

sampleBIR’ The BIR to be identified

referenceBIRPopulation 7
An array of BIRs against which the Identify match is
performed.

candidateRanking Array of BIR indices from the referenceBIRPopulation
listed in rank order. The indices are zero-based.

Remarks This function accepts a sampleBIR, and compares it against a set of
referenceBIRPopulation. It then returns a rank ordered array of
referenceBIRPopulation indices in candidateRanking.

Errors A UposException may be thrown when this method is invoked. For further

information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL referenceBIRPopulation was not valid or Biometrics
capture is in progress.

7- In the OPOS environment, the format of sampleBIR and referenceBIRPopulation

depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4

162 Biometrics
processPrematchData Method Updated in Release 1.11
Syntax processPrematchData (sampleBIR: binary, prematchDataBIR: binary, inout

processedBIR: binary)
void { raises-exception, use after open-claim-enable}

Parameter Description

sampleB]R8 BIR to be processed

prematchDataBIR BIR containing prematch data previously emitted by the
associated MOC Library.

processedBIR 8 The newly constructed processed BIR

Remarks This function creates processed biometric samples suitable for Match-on-Card
(MOC). It enables MOC implementations that require the retrieval of “prematch”
data from the card prior to the subsequent matching operation. Since smart cards
generally do not have the capability to capture and process biometric samples, the
on-card MOC functionality needs a host to perform off-card operations such as
sample acquisition and feature extraction. In this case, the card needs the host to
perform an operation based on prematch data that is retrieved from the card.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL sampleBIR was not valid, Biometrics capture is in
progress, or CapPrematchData is false.

See Also CapPrematchData Property.

8 In the OPOS environment, the format of sampleBIR, prematchDataBIR, and
processedBIR depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations)

163

verify Method
Syntax

Remarks

Errors

See Also

Updated in Release 1.11

verify(maxFARRequested: inf32, maxFRRRequested: int32,
FARPrecedence: boolean, referenceBIR: binary, inout adaptedBIR: binary,
inout result: boolean, inout FARAchieved: int32, inout FRRAchieved: int32,
inout payload: binary, timeout: int32):

void { raises-exception, use after open, claim, enable }

Parameter Description

maxFARRequested The requested FAR criterion for successful verification.

maxFRRRequested The requested FRR criterion for successful verification.
An EMPTY pointer indicates that this criterion is not
provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO_ FAR PRECEDENCE
indicates that maxFARRequested takes precedence,
BIO_FRR PRECEDENCE indicates that
maxFRRRequested takes precedence.

referenceBIR9 The BIR to be verified against.

adaptedBIR ? A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

result A boolean value of true for a successful match or false
for a failed match.

FARAchieved FAR Value indicating the closeness of the match.

FRRAchieved FRR Value indicating the closeness of the match.

payload ? If a payload is associated with the referenceBIR, it is
returned in an allocated binary if the FARAchieved
satisfies the match criteria of the Service Object.

timeout Maximum number of milliseconds to attempt a

successful biometric capture before failing.

This function captures biometric data from the attached device within the allotted
timeout, and compares it against the referenceBIR. If the match is successful as
indicated by a positive result and an adaptedBIR handle was provided, the Service
will attempt to adapt the referenceBIR from information take form the captured
BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL referenceBIR was not valid or Biometrics capture is in
progress.

E TIMEOUT The specified timeout has elapsed before biometric data

was captured.

BIR Property, CapTemplateAdaptation Property.

% In the OPOS environment, the format of referenceBIR, adaptedBIR, and payload
depends upon the value of the BinaryConversion property. See BinaryConversion
property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

164

UnifiedPOS Retail Peripheral Architecture

Chapter 4
Biometrics

verifyMatch Method

verifyMatch (maxFARRequested: int32, maxFRRRequested: int32,
FARPrecedence: boolean, sampleBIR: binary, referenceBIR: binary, inout
adaptedBIR: binary, inout result: boolean, inout FARAchieved: int32, inout
FRRACchieved: int32, inout payload: binary):

void { raises-exception, use after open, claim, enable }

Syntax

Remarks

Errors

Updated in Release 1.11

Parameter Description

maxFARRequested The requested FAR criterion for successful verification.

maxFRRRequested The requested FRR criterion for successful verification.
An EMPTY pointer indicates that this criterion is not
provided.

FARPrecedence If both criteria are provided, this parameter indicates
which takes precedence. BIO FAR_PRECEDENCE
indicates that maxFARRequested takes precedence,
BIO_FRR PRECEDENCE indicates that
maxFRRRequested takes precedence.

sampleBIR"" The BIR to be identified.

referenceBIR?
adaptedBIR '°

result

FARAchieved
FRRAchieved
payload '°

The BIR to be verified against.

A pointer to the handle of the adapted BIR. This
parameter can be EMPTY (0x00) if an adapted BIR is
not desired.

A boolean value of true for a successful match or false
for a failed match.

FAR Value indicating the closeness of the match.
FRR Value indicating the closeness of the match.

If a payload is associated with the referenceBIR, it is
returned in an allocated binary[] if the FARAchieved
satisfies the match criteria of the Service.

This function compares a sampleBIR against the referenceBIR. If the match is
successful as indicated by a positive result and an adaptedBIR handle was
provided, the Service will attempt to adapt the referenceBIR from information
taken from the captured BIR.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

referenceBIR was not valid or Biometrics capture is in
progress.

10-1n the OPOS environment, the format of sumpleBIR, referenceBIR, adaptedBIR,

and payload depends upon the value of the BinaryConversion property. See
BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML Interfaces)

165

Events (UML

DataEvent

<< event >>

Description

Attributes

Interfaces)

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application that input data is available.
This event contains the following attribute:

Attributes Type Description

Remarks

See Also

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

Status int32 BIO_DATA_ ENROLL if enroll capture is completed.
BIO_DATA_ VERIFY if verify capture is completed.

The properties BIR and RawSensorData are set to appropriate values prior to a
DataEvent being delivered to the application.

“Events” on page 39, BIR Property, RawSensorData Property,
beginEnrollCapture Method, beginVerifyCapture Method, endCapture
Method.

upos::events::DirectiIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Biometrics Capture Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendors’ Biometric devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

166

UnifiedPOS Retail Peripheral Architecture Chapter 4
Biometrics

ErrorEvent

Updated in Release 1.11

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a Biometrics device error has been detected and a
suitable response by the application is necessary to process the error condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 40.

ErrorCodeExtended
int32 Extended Error code causing the error event. It may
contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available. (Very unlikely - see Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear all buffered input data. The error state is exited.
Default when locus is EL._INPUT.

ER _CONTINUEINPUT
Used only when locus is EL_ INPUT DATA.
Acknowledges the error and directs the Service to
continue processing. The Service remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT. Default when locus isEL_INPUT DATA.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML Interfaces) 167

Remarks Enqueued when an error is detected while trying to read biometric capture data.
This event is not delivered until DataEventEnabled is set to true and other event
delivery requirements are met, so that proper application sequencing occurs.

With proper programming, an ErrorEvent with locus EL_ INPUT DATA will
not occur. This is because each biometrics capture requires an explicit
beginXxxxxxCapture method, which can generate at most one DataEvent. The
application would need to defer the DataEvent by setting DataEventEnabled to
false and request another capture before an EL_INPUT DATA would be possible.

See Also “Device Input Model” on page 42, “Device Information Reporting Model” on
page 50, “Events” on page 39.

StatusUpdateEvent Updated in Release 1.11

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Biometric
Capture device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Biometrics
device or reports a requested user interaction with the
Biometrics sensor to complete the capture. In the case of
the latter, the following directives can be issued:

Value Meaning

BIO SUE RAW DATA Raw image data is available.
BIO_SUE MOVE _LEFT The position was too far to the right.
BIO_SUE MOVE _RIGHT The position was too far to the left.
BIO_SUE MOVE DOWN The position was too high.
BIO_SUE MOVE_UP The position was too low.

BIO SUE MOVE _CLOSER The position was too far away.

BIO SUE MOVE_AWAY The position was too near (close).

BIO_ SUE MOVE BACKWARD The position was too far forward.
BIO_SUE MOVE_FORWARD The position was too far backward.

BIO_SUE MOVE_SLOWER The motion was too fast, move slower.
BIO SUE MOVE FASTER The motion was too slow, move faster.
BIO SUE SENSOR DIRTY The sensor is dirty and requires cleaning.
Remarks Enqueued when the Biometric Capture device detects a power state change or user
interaction.
See Also “Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 4
168 Biometrics

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 5

Bump Bar

Summary

This Chapter defines the Bump Bar device category.

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.3
1.9
1.3
1.8
1.9
1.8
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3

1.3
1.3
1.3
1.3
1.3
1.3

May Use After
Not Supported
open
open
open
open
open
open
open
open
open
open & claim
open
open
open

open

open
open
open

open

UnifiedPOS Retail Peripheral Architecture Chapter 5
170 Bump Bar

Properties (Continued)

Specific Type Mutability Version May Use After
AsyncMode: boolean { read-write } 1.3 open, claim, & enable
AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable
AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable
BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable
CapTone: boolean { read-only } 1.3 open, claim, & enable
CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable
ErrorString: string { read-only } 1.3 open
ErrorUnits: int32 { read-only } 1.3 open
EventString: string { read-only } 1.3 open & claim
EventUnitID: int32 { read-only } 1.3 open & claim
EventUnits: int32 { read-only } 1.3 open & claim
Keys: int32 { read-only } 1.3 open, claim, & enable
Timeout: int32 { read-write } 1.3 open
UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 171

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.3
void { raises-exception }

close (): 1.3
void { raises-exception, use after open }

claim (timeout: int32): 1.3
void { raises-exception, use after open }

release (): 1.3
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.3
void { raises-exception, use after open, claim, enable }

clearInput (): 1.3
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { raises-exception, use after open, claim } supported”

clearQutput (): 1.3
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: int32, inout obj: object): 1.3
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9

void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name
bumpBarSound (units: int32, frequency: int32, duration: int32, 1.3
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open, claim, enable }
setKeyTranslation (units: inf32, scanCodes: int32, logicalKey: int32): 1.3

void { raises-exception, use after open, claim, enable }

a. No sensitive information is generated or stored.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 5
172 Bump Bar
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.3
Status: int32 { read-only }
upos::events::DirectlOEvent 1.3
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.3
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent 1.3
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.3
Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 173

General Information

The Bump Bar programmatic name is “BumpBar”.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

* Supports broadcast methods that can communicate with one, a range, or all
bump bar units online.

e Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

* Supports bump bar enunciator output with frequency and duration.

* Supports tactile feedback via an automatic tone when a bump bar key is
pressed.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Chapter 5

UnifiedPOS Retail Peripheral Architecture
Bump Bar

Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

<<event>> <<utility>> <<utiliy>> | _ <Uses>> <<Interface>>
DataEvent BumpBarConst UposConst |~ "7~ BaseControl
(from events) (from upos) (from upos)] (from upos)
N /ecuses>> -~ /
\<<uses>> | / <<sends>>
\ e /4
) // .
res \ | | <<except|on_>>
<<event>> ! UposException
DirectlOEvent \ / (from upos)
(from events) !
/!
\ / 7
\ /
fires ‘ j / <<sends>>
\ /
<<Interface>>
BumpBarControl
(from upos)

g<<capability>> CapTone : boolean

&<<prop>> AsyncMode : boolean

&<<prop>> Timeout : int32

&<<prop>> UnitsOnline : int32

g<<prop>> CurrentUnitID : int32

g<<prop>> AutoToneDuration : int32

&<<prop>> AutoToneFrequency : int32

#<<prop>> BumpBarDataCount : int32

&<<prop>> Keys : int32

g<<prop>> ErrorUnits : int32

g<<prop>> ErrorString : string

&<<prop>> EventUnitID : int32

&<<prop>> EventUnits : int32

<<prop>> EventString : string

| “*bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
#setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

ﬁ;s/ ﬂ“res \firi
/ v

<<event>> <<event>> <<event>>
ErrorEvent StatusUpdateEvent OutputCompleteEvent
(from events) (from events) (from events)

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

175

Model

The general model of a bump bar is:

The bump bar device class is a subsystem of bump bar units. The initial
targeted environment is food service, to control the display of order
preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage
and control the entire subsystem of bump bars. If applications on the same or
other workstations and POS Terminals will need to access the subsystem, then
this application must act as a subsystem server and expose interfaces to other
applications.

All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID 1 through BB_UID 32 are bitwise ORed to form
the bitmask.) The Service will attempt to satisfy the method for all unit(s)
indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors
received. The method will then notify the application of the error condition. In
the case where two or more units encounter different errors, the Service should
determine the most severe error to report.

The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. (One of the constants BB_UID 1 through BB_UID 32 are
selected.) See the description of these common methods to understand how
the current unit ID property is used.

When the current unit ID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the depen-
dent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The defini-
tions range from BB_UID 1to BB_UID 32. These definitions are also used
to create the bitwise parameter, units, used in the broadcast methods.

UnifiedPOS Version 1.11 -- Released January 15, 2007

176

UnifiedPOS Retail Peripheral Architecture Chapter 5

Bump Bar

Input — Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input
with some differences:

When input is received, a DataEvent is enqueued.

This device does not support the AutoDisable property, so the device will not
automatically disable itself when a DataEvent is enqueued.

An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it reenables events by setting DataEventEnabled to true.

An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

The BumpBarDataCount property may be read to obtain the number of
bump bar DataEvents for a specific unit ID enqueued. The DataCount
property can be read to obtain the total number of data events enqueued.

Queued input may be deleted by calling the clearInput method. See
clearInput method description for more details.

The Bump Bar Service provider must supply a mechanism for translating its inter-
nal key scan codes into user-defined codes which are returned by the data event.
Note that this translation must be end-user configurable. The default translated key
value is the scan code value.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

177

Output - Tone Updated in Release 1.7

The bump bar follows the general “Device Output Model,” with some enhance-
ments:

The bumpBarSound method is performed either synchronously or
asynchronously, depending on the value of the AsyncMode property.

When AsyncMode is false, then this method operates synchronously and the
Device returns to the application after completion. When operating
synchronously, the application is notified of an error if the method could not
complete successfully.

When AsyncMode is true, then this method operates as follows:

* The Device buffers the request in program memory, for delivery to the
Physical Device as soon as the Physical Device can receive and process
it, sets the QutputID property to an identifier for this request, and returns
as soon as possible. When the device completes the request successfully,
the EventUnits property is updated and an QutputCompleteEvent is
enqueued. A property of this event contains the output ID of the
completed request.

* Ifan error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.

Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a broadcast method, then ErrorUnits and ErrorString are
set instead.

The event handler may call synchronous bump bar methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

* Asynchronous output is performed on a first-in first-out basis.

* All output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This
method also stops any output that may be in progress (when possible).

Device Sharing

The bump bar is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing many
bump bar specific properties.

The application must claim and enable the device before calling methods that
manipulate the device.

When a claim method is called again, settable device characteristics are
restored to their condition at release.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 5
178 Bump Bar

Bump Bar State Diagram

e iceEna}ﬁIed(faIse)

Enabled

/setDeviceEnabled(true)

[AsyncMode == true]/bumpBarSound

[async requests done

bar input error]

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 179

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open-claim-enable }

If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

bumpBarSound Method, “Device Output Models” on page 45.

AutoToneDuration Property

Syntax

Remarks

Errors

See Also

AutoToneDuration: int32 { read-write, access after open-claim-enable }

Holds the duration (in milliseconds) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentUnitID Property.

AutoToneFrequency Property

Syntax

Remarks

Errors

See Also

AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Holds the frequency (in Hertz) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentUnitID Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

180

UnifiedPOS Retail Peripheral Architecture Chapter 5
Bump Bar

BumpBarDataCount Property

Syntax

Remarks

Errors

See Also

BumpBarDataCount: in#32 { read-only, access after open-claim-enable }

Holds the number of DataEvents enqueued for the bump bar unit specified by the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a bump bar unit, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentUnitID Property, DataEvent.

CapTone Property

Syntax

Remarks

Errors

See Also

CapTone: boolean { read-only, access after open-claim-enable }

If true, the bump bar unit specified by the CurrentUnitID property supports an
enunciator.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentUnitID Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 181

CurrentUnitID Property

Syntax

Remarks

Errors

CurrentUnitID: inf32 { read-write, access after open-claim-enable }

Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar
device. The unit ID definitions range from BB_UID_1 to BB UID_32.

Setting this property will update other properties to the current values that apply to
the specified unit. The following properties and methods apply only to the selected
bump bar unit ID:

* Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount,
CapTone, and Keys.

* Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID 1 when the device is first enabled
following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DataCount Property

Syntax

Remarks

Errors

See Also

DataCount: int32 { read-only, access after open }

Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
BumpBarDataCount property.

The application may read this property to determine whether additional input is
enqueued, but has not yet been delivered because of other application processing,
freezing of events, or other causes.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

BumpBarDataCount Property, DataEvent Event, “Device Input Model” on
page 42.

UnifiedPOS Version 1.11 -- Released January 15, 2007

182

UnifiedPOS Retail Peripheral Architecture Chapter 5
Bump Bar

ErrorString Property

Syntax

Remarks

Errors

See Also

ErrorString: string { read-only, access after open }

Holds a description of the error which occurred on the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

ErrorUnits Property.

ErrorUnits Property

Syntax

Remarks

Errors

See Also

ErrorUnits: int32 { read-only, access after open }

Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

ErrorString Property.

EventString Property

Syntax

Remarks

Errors

See Also

EventString: string { read-only, access after open-claim }

Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

EventUnits Property, ErrorEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 183

EventUnitID Property

Syntax

Remarks

Errors

See Also

EventUnitID: int32 { read-only, access after open-claim }

Holds the bump bar unit ID causing a DataEvent. This property is set just before
a DataEvent is delivered. The unit ID definitions range from BB_UID 1 to
BB UID 32.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DataEvent.

EventUnits Property

Syntax

Remarks

Errors

See Also

Keys Property
Syntax

Remarks

Errors

See Also

EventUnits: int32 { read-only, access after open-claim }

Holds a bitwise mask of the unit(s) when an OutputCompleteEvent,
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

Keys: int32 { read-only, access after open-claim-enable }

Holds the number of keys on the bump bar unit specified by the CurrentUnitID
property.

This property is initialized when the device is first enabled following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentUnitID Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

184

UnifiedPOS Retail Peripheral Architecture Chapter 5
Bump Bar

Timeout Property

Syntax

Remarks

Errors

See Also

Timeout: int32 { read-write, access after open }

Holds the timeout value in milliseconds used by the bump bar device to complete
all output methods supported. If the device cannot successfully complete an output
method within the timeout value, then the method notifies the application of the
error.

This property is initialized to a Service dependent timeout following the open
method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property, ErrorString Property, bumpBarSound Method.

UnitsOnline Property

Syntax

Remarks

Errors

See Also

UnitsOnline: in#32 { read-only, access after open-claim-enable }

Bitwise mask indicating the bump bar units online, where zero or more of the unit
constants BB_UID 1 (bit 0 on) through BB_UID 32 (bit 31 on) are bitwise ORed.
32 units are supported.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

checkHealth Method, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations)

185

Methods (UML operations)

bumpBarSound Method

Syntax

Remarks

bumpBarSound (units: int32, frequency: int32, duration: int32,

numberOfCycles: int32, interSoundWait: in#32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to
operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat
continuously. Else perform the specified number of
cycles.

interSoundWait When numberOfCycles is not one, then pause for

interSoundWait milliseconds before repeating the tone
cycle (before playing the tone again)

Sounds the bump bar enunciator for the bump bar(s) specified by the units

parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be
stopped by using the clearQutput method. (When a numberOfCycles value of
FOREVER was used to start the sound, then the application must use clearOutput
to stop the continuous sounding of tones.)

UnifiedPOS Version 1.11 -- Released January 15, 2007

186

UnifiedPOS Retail Peripheral Architecture Chapter 5

Bump Bar

Errors

See Also

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E_ILLEGAL

E_FAILURE

One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value
nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is
false.

A negative interSoundWait was specified.
units is zero or a non-existent unit was specified.
A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be
updated before the exception is thrown.

An error occurred while communicating with one of the
bump bar units specified by the units parameter. The
ErrorUnits and ErrorString properties are updated
before the exception is thrown. (Can only occur if
AsyncMode is false.)

AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone
Property, clearOutput Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 187

checkHealth Method (Common)

Syntax

Remarks

Errors

See Also

checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device.

CH_INTERACTIVE Perform an interactive test of the device. The Service
will typically display a modal dialog box to present test
options and results.

When CH_INTERNAL or CH_EXTERNAL level is requested, the method will
check the health of the bump bar unit specified by the CurrentUnitID property.
When the current unit ID property is set to a unit that is not currently online, the
device will attempt to check the health of the bump bar unit and report a
communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E FAILURE An error occurred while communicating with the bump
bar unit specified by the CurrentUnitID property.

CurrentUnitID Property, UnitsOnline Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

188

UnifiedPOS Retail Peripheral Architecture Chapter 5
Bump Bar

clearinput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the
CurrentUnitID property.
Any data events that are enqueued — usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false — are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also CurrentUnitID Property, “Device Input Model” on page 42.

clearOutput Method (Common) Updated in Release 1.7
Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered, including all asynchronous output,
for the unit specified by the CurrentUnitID property.
Any output complete and output error events that are enqueued — usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false — are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also CurrentUnitID Property, “Device Output Models” on page 45.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations)

189

setKeyTranslation Method

Syntax

Remarks

Errors

See Also

setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):

void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set
key translation for.

scanCode The bump bar generated key scan code. Valid values 0-
255.

logicalKey The translated logical key value. Valid values 0-255.

Assigns a logical key value to a device-specific key scan code for the bump bar
unit(s) specified by the units parameter. The logical key value is used during
translation during the DataEvent.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL

One of the following errors occurred:
scanCode or logicalKey are out of range.
units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are
updated prior to notifying the application of the error.

ErrorUnits Property, ErrorString Property, DataEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

190

UnifiedPOS Retail Peripheral Architecture Chapter 5
Bump Bar

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 {read-only }

Notifies the application when status from the bump bar is available.
This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type,
located in the low word, the remaining 2 bytes will contain additional data. The
diagram below indicates how the Status property is divided:

High Word Low Word (Event Type)

High Byte Low Byte
Unused. Always zero. LogicalKeyCode BB DE KEY

Enqueued to present input data from a bump bar unit to the application. The low
word contains the Event Type. The high word contains additional data depending
on the Event Type. When the Event Type is BB DE_KEY, the low byte of the
high word contains the LogicalKeyCode for the key pressed on the bump bar unit.
The LogicalKeyCode value is device independent. It has been translated by the
Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

“Device Input Model” on page 42, EventUnitID Property, DataEventEnabled
Property, FreezeEvents Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 191

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DirectiIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Bump Bar Service to provide events to the application
that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bump Bar devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 5

192 Bump Bar
ErrorEvent Updated in Release 1.10
<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
Description Notifies the application that a Bump Bar error has been detected and a suitable
response by the application is necessary to process the error condition.
Attributes This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 40.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 193

Remarks

See Also

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error event listener may change ErrorResponse
to one of the following values:

Value Meaning

ER RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER _CLEAR Clear all buffered output data (including all
asynchronous output) or buffered input data. The error

state is exited.
Default when locus is EL_INPUT.

ER _CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT DATA.

Enqueued when an error is detected while gathering data from or processing
asynchronous output for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

“Device Output Models” on page 45, “Device Information Reporting Model” on
page 50, DataEventEnabled Property, EventUnits Property, EventString
Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 5
194 Bump Bar

OutputCompleteEvent

<<event>> upos::events::QutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete. The EventUnits property is updated before
delivering.

Remarks Enqueued when a previously started asynchronous output request completes
successfully.

See Also EventUnits Property, “Device Output Models” on page 45.
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.
Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent”
description on page 96)

* Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

* When the bump bar device is enabled, then a StatusUpdateEvent is enqueued
to specify the bitmask of online units.

e While the bump bar device is enabled, a StatusUpdateEvent is enqueued
when the power state of one or more units change. If more than one unit
changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 6

Cash Changer

This Chapter defines the Cash Changer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string {read-only} 1.2 open
Claimed: boolean {read-only} 1.2 open
DataCount: int32 {read-only} 1.5 open
DataEventEnabled: boolean {read-write} 1.5 open
DeviceEnabled: boolean {read-write} 1.2 open & claim
FreezeEvents: boolean {read-write} 1.2 open
OutputID: int32 {read-only} 1.2 Not Supported
PowerNotify: int32 {read-write} 1.3 open
PowerState: int32 {read-only} 1.3 open
State: int32 {read-only} 1.2 -
DeviceControlDescription: string {read-only} 1.2 --
DeviceControlVersion: int32 {read-only} 1.2 --
DeviceServiceDescription: string {read-only} 1.2 open
DeviceServiceVersion: int32 {read-only} 1.2 open
PhysicalDeviceDescription: string {read-only} 1.2 open

PhysicalDeviceName: string {read-only} 1.2 open

UnifiedPOS Retail Peripheral Architecture Chapter 6
196 Cash Changer

Properties (Continued)

Specific Type Mutability Version May Use After
CapDeposit: boolean {read-only} 1.5 open
CapDepositDataEvent: boolean {read-only} 1.5 open
CapDiscrepancy: boolean {read-only} 1.2 open
CapEmptySensor: boolean {read-only} 1.2 open
CapFullSensor: boolean {read-only} 1.2 open
CapJamSensor: boolean {read-only} 1.11 open
CapNearEmptySensor: boolean {read-only} 1.2 open
CapNearFullSensor: boolean {read-only} 1.2 open
CapPauseDeposit: boolean {read-only} 1.5 open
CapRealTimeData: boolean {read-only} 1.11 open
CapRepayDeposit: boolean {read-only} 1.5 open
AsyncMode: boolean {read-write} 1.2 open
AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable
AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable
CurrencyCashList: string {read-only} 1.2 open
CurrencyCode: string {read-write} 1.2 open
CurrencyCodeList: string {read-only} 1.2 open
CurrentExit: int32 {read-write} 1.2 open
CurrentService: int32 {read-write} 1.11 open
DepositAmount: int32 {read-only} 1.5 open
DepositCashList: string {read-only} 1.5 open
DepositCodeList: string {read-only} 1.5 open
DepositCounts: string {read-only} 1.5 open
DepositStatus: int32 {read-only} 1.5 open, claim, & enable
DeviceExits: int32 {read-only} 1.2 open
DeviceStatus: int32 {read-only} 1.2 open, claim, & enable
ExitCashList: string {read-only} 1.2 open
FullStatus: int32 {read-only} 1.2 open, claim, & enable
RealTimeDataEnabled: boolean {read-write} 1.11 open, claim & enable
ServiceCount: int32 {read-only} 1.11 open
Servicelndex: int32 {read-only} 1.11 open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 197
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.2
void { raises-exception }
close (): 1.2
void { raises-exception, use after open }
claim (timeout: int32): 1.2
void { raises-exception, use after open }
release (): 1.2
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.2
void { raises-exception, use after open, claim, enable }
clearInput (): 1.5
void { raises-exception, use after open, claim }
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directIO (command: int32, inout data: int32, inout obj: object): 1.2
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific
Name
adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }
beginDeposit (): 1.5
void { raises-exception, use after open, claim, enable }
dispenseCash (cashCounts: string): 1.2
void { raises-exception, use after open, claim, enable }
dispenseChange (amount: inz32): 1.2
void { raises-exception, use after open, claim, enable }
endDeposit (success: int32): 1.5
void { raises-exception, use after open, claim, enable }
fixDeposit (): 1.5

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
198 Cash Changer

pauseDeposit (control: int32): 1.5
void { raises-exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.2
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.5

Status: int32 { read-only }
upos::events::DirectlOEvent 1.2

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.2

Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 199

General Information

The Cash Changer programmatic name is “CashChanger”.

Capabilities Updated in Release 1.11

The Cash Changer has the following capabilities:
* Reports the cash units and corresponding unit counts available in the Cash
Changer.

* Dispenses a specified amount of cash from the device in either bills, coins, or
both into a user-specified exit.

* Dispenses a specified number of cash units from the device in either bills,
coins, or both into a user-specified exit.

* Reports jam conditions within the device.

* Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

* Reporting the fullness levels of the Cash Changer’s cash units. Conditions
which may be indicated include empty, near empty, full, and near full states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

Release 1.5 and later — Support for the cash acceptance is added
as an option.

* The money (bills and coins) which is deposited into the device between the
start and end of cash acceptance is reported to the application. The contents of
the report are cash units and cash counts.

Release 1.11 and later — Support for the use of cash device sub-

services

* The service can use sub-services for other cash devices to create a full-
function cash changer service. Properties are added for the extraction of
information from the sub-services.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
200

Chapter 6
Cash Changer

CashChanger Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the CashChanger classes.

<<exception>>

UposException
(fomupog

’\\\ <<sends>>
\
<<Interface>>
CashChangerControl
(from upos)

% <<capability>> CapDeposit : boolean

& <<capability>> CapDepositDataE \ent : boolean
<<ewent>> &% <<capability>> CapDiscrepancy : boolean
DataEvent B<<capability>> CapEnmptySensor : boolean
fomevsnt) &% <<capalility>> CapFullSensor : bodean

) & <<capability>> CapJamSensor : Boolean

fires B <<capaility>> CapNearEmptySensor : boolean
% <<capability>> CapNearFullSensor : boolean
& <<capability>> CapPauseDeposit : boolean

5 <<capability>> CapRealTimeData : Boolean

<<ewent>> & <<capability>> CapRepayDeposit : boolean
DirectiOEvent & <<prop>> AsyncMode : boolean
fromeverts) fires | BB<<prop>> AsyncResultCode : int32
&% <<prop>> AsyncResultCodeExtended : int32
B5<<prop>> CurrencyCashist : string

& <<prop>> CurrencyCode : string
& <<prop>> CurencyCodeList : string
& <<prop>> CurrentExit : int32

<<event>> fires | B<<prop>> CumrentSenice : int32
StatusUpdateEvent |- —| Ba<<prop>> DepositAmourt : int32
(fom events) B <<prop>> DepositCashList : string
B <<prop>> DepositCodeList : string
&% <<prop>> DepositCounts : string

fires | B4<<prop>> DepositStatus : int32
&% <<prop>> DeviceExits : int32
<<ewent>> / B <<prop>> DeviceStatus : int32
ErrorEvent &% <<prop>> ExitCashList : string
(from events) & <<prop>> FullStatus : int32
E<<prop>> Real TimeDataEnabled : boolean

&5 <<prop>> SeniceCount : int32
& <<prop>> Senicelndex : int32

FadjustCashCounts(cashCaunts : stiing)

SbeginDeposit()

SdispenseCash(cashCaunts : string)
SdispenseChange(@amount : int32)

¥endDepoasit(amount : int32)

SfixDeposit()

®paus eDeposit(contral : int32)

®readCashCounts(cashCounts : string, discrepancy : boolean)

<<utility>>
UposConst

(from upos)

<<utility>>
CashChangerConst

(from upos)

Z,
s
-

.7 <<uses>>

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

201

Model Updated in Release 1.11

The general model of a Cash Changer is:

Supports several cash types such as coins, bills, and combinations of coins and
bills. The supported cash type for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

Prior to Release 1.5 this specification provides programmatic control only for
the dispensing of cash. The accepting or removing of cash by the device (for
example, to replenish cash) is controlled by the adjustCashCounts method,
unless the device can determine the amount of cash on its own. The
application can call readCashCounts to retrieve the current unit count for
each cash unit, but cannot control when or how cash is added to the device.

May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

Dispenses cash into the exit specified by CurrentExit when either
dispenseChange or dispenseCash is called. With dispenseChange, the
application specifies a total amount to be dispensed, and it is the responsibility
of the Cash Changer device or the Control to dispense the proper amount of
cash from the various slots or bins. With dispenseCash, the application
specifies a count of each cash unit to be dispensed.

Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMaode is true and no exception is thrown by either
dispenseChange or dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with
its Data property set to CHAN STATUS ASYNC. The request’s completion
status is set in the AsyncResultCode and AsyncResultCodeExtended
properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.
Nesting of asynchronous Cash Changer operations is illegal; only one
asynchronous method can be processed at a time.

UnifiedPOS Version 1.11 -- Released January 15, 2007

202

UnifiedPOS Retail Peripheral Architecture Chapter 6

Cash Changer

The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status, and in the FullStatus property to show full
and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS EMPTY, and if there are one or more full
cash slots, then FullStatus is CHAN STATUS FULL.

After Release 1.5 — Support for cash acceptance is added as an
option.
The cash acceptance model is as follows:

Note that the AsyncMode property has no affect on methods that have been
added for cash acceptance, since these are treated as input methods.

The dispensing of change function of this device is not dependent upon the
availability of a “cash acceptance” function option. Dispensing of change and
collection of money are two independent functions.

Receipt of cash (cash acceptance function) is an option that may be provided
by the Cash Changer device. Cash acceptance into the “cash acceptance
mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to
Zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a
DataEvent is generated to inform the application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of
CHAN_DEPOSIT PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CHAN DEPOSIT RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until an endDeposit method is executed. At this point
the “cash acceptance” mechanism is notified to stop accepting cash. If
endDeposit method receives a CHAN_DEPOSIT CHANGE parameter, then
the mechanism will dispense cash change back to the user. If endDeposit is
invoked with a CHAN DEPOSIT NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if
endDeposit is invoked with a CHAN_DEPOSIT REPAY parameter, then all
collected cash is returned back to the user by the mechanism.

Two types of Cash Changer mechanisms are covered by this standard. In one
case where CapRepayDeposit is true, the bins that are used for collecting the
cash are the same bins that are used for dispensing the cash as change. In the

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 203

other case where CapRepayDeposit is false, the bins that are used for
collecting the cash are different from the bins that are used for dispensing the
change. In the first case, if a transaction is aborted for any reason, the same
cash the user input to the mechanism will be returned to the user. In the second
case, it is up to the application to dispense an equivalent amount of cash (not
the same physical cash collected) back to the user for an aborted transaction.

¢ The Cash Changer mechanisms can only be used in one mode at a time. While
the mechanism is collecting deposited cash, it cannot dispense change at the
same time. Therefore, while beginDeposit method is being executed, no
payment of change can occur. Only after an endDeposit method call can the
proper amount of change be determined (either by the application or by a
“smart” Cash Changer) and dispensed to the user. Each Cash Changer
manufacturer must determine the amount of time it takes to process the
received cash and place in storage bins before it completes the endDeposit
method.

* When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

* After Release 1.11 — Support for the use of cash device sub-
services.

¢ The cash device sub-service model is as follows:

* Cash Changer service can utilize other cash device sub-services, such as coin
dispensers, coin acceptors, bill dispenser, bill acceptors and other cash
changers to access device hardware, creating a full function cash changer
service. Each call to the cash changer service will invoke the corresponding
call to the sub-services. Therefore, an open call will call the open method of
all of the sub-services, claim will call claim, and so forth. The same can be said
for the cash changer properties. Some properties are available for dispensers,
while others are available only for acceptors. It is up to the aggregating cash
changer service to analyze and interpret the results of its communications to
the sub-services and report to the application. For example, if the open call
fails for one of the sub services, the exception should be passed up to the
application. The mapping of the properties and methods from service to sub-
service is as follows:

Cash Coin Bill Coin Bill

Changer Dispenser Dispenser Acceptor Acceptor
CapDeposit
CapDepositDataEvent
CapDiscrepancy X X X X
CapEmptySensor X X
CapJamSensor X X X X
CapFullSensor X X
CapNearEmptySensor X X
CapNearFullSensor X X
CapPauseDeposit X X
CapRealTimeData X X
CapRepayDeposit
AsyncMode X
AsyncResultCode X

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
204

Chapter 6
Cash Changer

Cash Coin Bill Coin
Changer Dispenser Dispenser Acceptor Acceptor

Bill

AsyncResultCodeExtended

CurrencyCashList

CurrencyCode

CurrencyCodeList

K P | | A
>

CurrentExit

CurrentService

DepositAmount

DepositCashList

DepositCodeList

DepositCounts

X P | R <

DepositStatus

ikaltaltallke

DeviceExits

DeviceStatus DispenserStatus

X | <

ExitCashList

FullStatus X

ServiceCount

Servicelndex

RealTimeDataEnabled

| <

beginDeposit()

> <

dispenseCash() X

dispenseChange() X

endDeposit()

fixDeposit()

pauseDeposit()

X | |

readCashCounts() X X

lkalkalkel

* ServiceCount lists the number of sub-services used by the cash changer.

* Servicelndex is a byte segmented property containing the index for each sub-

service.

» Ifaccess to sub-service property and method information is desired, setting the
CurrentService property to the desired index will allow the application to
request property information of the specified sub-service.

Coin Cash Changer Senice

P08 <<Interface>> CashChangerSenice
o CashChangerControl - -
Application - — — — = > fomupoy |~~~ > L > Bllléb\:r‘(jiiztor
- -7
|
|
|
|
l
. . . : Bill Dispenser
Example of a Cash Changer Service using a coin cash changer ---= Senvce

service, a bill acceptor service and a bill dispenser service.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 205

Cash Changer Sequence Diagram Added in Release 1.7

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
CashChanger device. This means that the Claimed, DeviceEnabled properties are == true

:ClientApp | :CashChanger | |:CashChangerService| | :Human Actor |

— register to receive Dataa/ent with Control i

J_ [
setDataEventEnabIed(t[ulel) setDataEventEnabIedﬁrLe)

oI

T |

—beginDeposit() | beginDeposit() i DepositCounts and DepositAmount
\T] property values are initialjzed

i = |

! ! | accepting cash H;l

! ! DepositCounts and DepositAmount

| | property values are Updated

| . deliver DataEvent PR

! deliver DataEvent ||

pauseDeposit(Pause) ﬂpauseDeposn (Pause) _ |

while checL amount accepted |

is < amournt of sale |

setDataEventEnabled(true)
|

setDataEventEnabled(i rue)

pauseDeposit(Restart)

L’ pauseDeposit(Restart)

accepting cash

DepositCounts and DepositAmount
property values are Upc‘ated

’J__deliver DataEvent |

eliver DataEvent

endloop T | |
—fixDeposit U . | DepositCounts and DepasitAmount
bosit) J_' fixDeposit() | property values are finalized
endDeposit(Change/ \T‘ .
Nochange/Repayment) ! endDeposit(Change/ ||

if there is change !

dispenseChange() or |
dispenseCash() dispenseChange() or |

|
L'r‘dlspenseCash() ﬂ change E;I

|

Nochange/Repayment i

T D| EJ |
|

endif T

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
206 Cash Changer

Cash Changer State Diagram Updated in Release 1.8

/\
open() CIaIm()
. close() release()

setDeviceEnabled(fals

clearlnput()

ceEnabled(true)

Clearlnput Processing
entry/ empty data queue

cear&()\/

FixMode ‘

entry/ sync DepositCounts and DepositAmount

. Pay Money

done
[asyncMode == false] [asyncMode == true] Fire Events
Synchronous Pay

BT fire event entry/ enqueue StatusUpdateEvents

Device Sharing

The Cash Changer is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 207

Properties (UML attributes)

AsyncMode Property

Syntax

Remarks

Errors

See Also

AsyncMode: boolean { read-write, access after open }

If true, the dispenseCash and dispenseChange methods will be performed
asynchronously. If false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseChange Mecthod, dispenseCash Method.

AsyncResultCode Property

Syntax

Remarks

Errors

See Also

AsyncResultCode: int32 { read-only, access after open-claim-enable }

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN STATUS ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

AsyncResultCodeExtended Property

Syntax

Remarks

Errors

See Also

AsyncResultCodeExtended: in#32 { read-only, access after open-claim-
enable}

Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).

This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ ASYNC.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property, dispenseCash Method, dispenseChange Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
208 Cash Changer

CapDeposit Property Added in Release 1.5
Syntax CapDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit

Method.
CapDepositDataEvent Property Added in Release 1.5
Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDiscrepancy Property
Syntax CapDiscrepancy: boolean { read-only, access after open }
Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also readCashCounts Method.
CapEmptySensor Property
Syntax CapEmptySensor: boolean { read-only, access after open }
Remarks If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DeviceStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 209

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property Added in Release 1.11

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax

Remarks

Errors

See Also

CapNearEmptySensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
empty.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DeviceStatus Property, StatusUpdateEvent.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Cash Changer can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
210 Cash Changer

CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also pauseDeposit Method.

CapRealTimeData Property Added in Release 1.11

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply data as the money is being accepted (“real
time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also RealTimeDataEnabled property.

CapRepayDeposit Property Added in Release 1.5
Syntax CapRepayDeposit: boolean { read-only, access after open }
Remarks If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also endDeposit Method.

CurrencyCashList Property
Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash dispensing units supported in the Cash Changer for the currency
represented by the CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the
units of coins, then the ASCII semicolon character (*;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Cash Changer. If

(3% 1)

a semicolon (*;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 211

e “1,5,10,50,100,500” ---
1, 5,10, 50, 100, 500 yen coin.

e “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

* %1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.
CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList

property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
CurrencyCodeList.

See Also CurrencyCodeList Property.

CurrencyCodelList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

212

UnifiedPOS Retail Peripheral Architecture Chapter 6

Cash Changer

CurrentExit Property

Syntax

Remarks

Errors

See Also

CurrentExit: int32 { read-write, access after open }

Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater then 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”

DeviceExits = 1

CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

Cash Changer supports both coins and bills; an auxiliary exit is used for
larger quantities of bills:

CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits =2

When CurrentExit = 1 : ExitCashList =
“1,5,10,50,100,500;1000,5000”

When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

Cash Changer supports bills; an auxiliary exit is used for larger quantities
of bills:

CurrencyCashList = ““;1000,5000,10000”

DeviceExits = 2

When CurrentExit = 1 : ExitCashList = “;1000,5000”

When CurrentExit = 2 : ExitCashList = <;1000,5000,10000”

This property is initialized to 1 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value

Meaning

E ILLEGAL An invalid CurrentExit value was specified.

CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 213

CurrentService Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

CurrentService: int32 { read-write, access after open }

Holds the current service. The value 0 represents the primary service, while values
greater than 0 and less than or equal to ServiceCount are used to request
information from the integrated services. Legal values range from 0 to
ServiceCount. The readCashCounts method and all of the properties, common
and specific, are accessible when the CurrentService is greater than 0.
CurrentService, ServiceCount and ServiceIndex will always reflect the primary
service.

Below are examples of a cash changer service using services for separate Coin
Acceptor and Dispenser and a bills only cash changer. A StatusUpdateEvent
indicting a jam has been received by the application. Only the bill changer and the
coin dispenser can detect a jam.

* Checking the values of the primary service:
CurrentService = 0
ServiceCount =3
Servicelndex = 50528769 (X03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Integrated Cash Changer Service 1.11.05”

« Changing the service to get information about the coin dispenser:
CurrentService = 2
ServiceCount =3
Servicelndex = 50528769 (X’03030201°)
DeviceStatus = CHAN STATUS OK
DeviceServiceDescription = “Pennybrite Coin Dispenser Service”

* The coin dispenser looks ok. Check the bill changer:
CurrentService =3
ServiceCount =3
ServiceIndex = 50528769 (X°03030201°)
DeviceStatus = CHAN STATUS JAM
DeviceServiceDescription = “Benjamin Bill Changer Service”

This property is initialized to 0 by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An invalid CurrentService value was specified.

ServiceCount Property, ServiceIndex Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6

214 Cash Changer
DepositAmount Property Added in Release 1.5

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash
Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.

DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode property. It is set to null when the cash acceptance process
is not supported.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (*;””) followed by ASCII numeric
comma delimited values for the bills that can be used with the Cash Changer. If
the semicolon (“;”) is absent, then all units represent coins.
Below are sample DepositCashList values in Japan.
« “1,5,10,50,100,500 ---
1, 5, 10, 50, 100, 500 yen coin.
« “1,5,10,50,100,500;1000,5000,10000” ---
1, 5,10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.
+ “1000,5000,10000” ---
1000, 5000, 10000 yen bill.
This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 215

DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to null when the cash
acceptance process is not supported.

It is a list of ASCII three-character ISO 4217 currency codes separated by com-
mas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.

DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is
the same as cashCounts in the dispenseCash method. Cash units inside the string
are the same as the DepositCashList property, and are in the same order. It is set
to null when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87
After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash
Changer.

This property is initialized by the open method

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CurrencyCode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

216

UnifiedPOS Retail Peripheral Architecture Chapter 6
Cash Changer

DepositStatus Property Added in Release 1.5

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

CHAN_STATUS DEPOSIT START

Cash acceptance started.
CHAN_STATUS_DEPOSIT END

Cash acceptance stopped.
CHAN_STATUS DEPOSIT NONE

Cash acceptance not supported.
CHAN_STATUS_DEPOSIT COUNT

Counting or repaying the deposited money.

CHAN_STATUS DEPOSIT JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CHAN STATUS DEPOSIT END after initialization, or to
CHAN_STATUS DEPOSIT NONE if the device does not support cash
acceptance.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DeviceExits Property

Syntax

Remarks

Errors

See Also

DeviceExits: int32 { read-only, access after open }
The number of exits for dispensing cash.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 217

DeviceStatus Property

Syntax

Remarks

Errors

DeviceStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning
CHAN_STATUS _OK The current condition of the Cash Changer is
satisfactory.

CHAN_STATUS _EMPTY

Some cash slots are empty.
CHAN_STATUS NEAREMPTY

Some cash slots are nearly empty.
CHAN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

ExitCashList Property

Syntax

Remarks

Errors

See Also

ExitCashList: string { read-only, access after open }

Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.

This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CHAN_STATUS _OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

218

UnifiedPOS Retail Peripheral Architecture Chapter 6
Cash Changer

RealTimeDataEnabled Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true and CapRealTimeData is true, each data event fired will update the
DepositAmount and DepositCounts properties. Otherwise, DepositAmount and
DepositCounts are updated with the value of the money collected when fixDeposit is
called. Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginDeposit method is performed. This prevents confusion
regarding what would happen if it were modified between a beginDeposit -
endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData property, DepositAmount property, DepositCounts
property, beginDeposit Method, endDeposit Method, fixDeposit Method.

ServiceCount Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

ServiceCount: int32 { read-only, access after open-claim-enable }
The number of integrated services used by the cash changer service. If the service
does not utilize other services, this value will be zero.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentService Property, ServiceIndex Property.

Servicelndex Property Added in Release 1.11

Syntax

Remarks

Errors

See Also

Servicelndex: int32 { read-only, access after open-claim-enable }

The value is divided into four bytes indicating the service index for each of the
integrated service types.The diagram below indicates how the property is divided:

A value of zero means that no integrated services are utilized.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Bill Dispenser Bill Acceptor | Coin Dispenser | Coin Acceptor

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrentService Property, ServiceCount Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 219

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the cash changer after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the changer.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Cash Changer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

readCashCounts Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
220 Cash Changer

beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.

* The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is
reported by DataEvents until fixDeposit is called while the deposit process is not
paused.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Either the Cash Changer does not support cash
acceptance, or the call sequence is not correct.

See Also CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, endDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 221

dispenseCash Method

Syntax

Remarks

Errors

See Also

dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”.
Units before ““;” represent coins, and units after “;” represent bills. If “;” is absent,
then all units represent coins.

Dispenses the cash from the Cash Changer into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

+ “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five
hundred yen coins.

e “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand
yen bills.

+ 51000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E ILLEGAL One of the following errors occurred:
* The cashCounts parameter value was illegal for the
current exit.
e Cash could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6
222 Cash Changer

dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to
the Cash Changer to determine what combination of bills and coins will satisfy the
tender requirements from its available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit
represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY The specified change cannot be dispensed because an
asynchronous method is in progress.

E ILLEGAL One of the following errors occurred:

* A negative or zero amount was specified.

e The amount could not be dispensed based on the
values specified in ExitCashList for the current
exit.

* Change could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified change cannot be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 223

endDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

CHAN_DEPOSIT _CHANGE The deposit is accepted and the deposited
amount is greater than the amount required.

CHAN_DEPOSIT NOCHANGE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.

CHAN_DEPOSIT _REPAY The deposit is to be repaid through the cash
deposit exit or the cash payment exit.

Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the
amount required then success is set to CHAN DEPOSIT NOCHANGE.

If success is set to CHAN _DEPOSIT_REPAY then the deposit is repaid through
either the cash deposit exit or the cash payment exit without storing the actual
deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were
deposited. Depending on the actual device, the cash repaid may be the exact same
bills and coins that were deposited, or it may not.

The application must call the fixDeposit method before calling this method.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
* The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

CapDepositDataEvent Property, DepositAmount Property, DepositCounts
Property, beginDeposit Method, fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 6

224 Cash Changer
fixDeposit Method Added in Release 1.5
Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks When this method is called, all property values are updated to reflect the current
values in the Cash Changer.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:
* Cash acceptance is not supported.
e The call sequence is invalid. beginDeposit must be
called before calling this method.
See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

endDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 225

pauseDeposit Method Added in Release 1.5

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CHAN_DEPOSIT PAUSE Cash acceptance is paused.
CHAN DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CHAN_DEPOSIT RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount
properties are updated to reflect the current state of the Cash Changer. The
property values are not changed again until the deposit process is resumed.

If control is CHAN_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* Cash acceptance is not supported.

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to CHAN_ DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CHAN_DEPOSIT RESTART.

CapDepositDataEvent Property, CapPauseDeposit Property, DepositAmount
Property, DepositCounts Property, beginDeposit Method, endDeposit Method,
fixDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

226

UnifiedPOS Retail Peripheral Architecture Chapter 6
Cash Changer

readCashCounts Method

Syntax

Remarks

Errors

See Also

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Cash Changer. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Cash Changer. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY Cash units and counts cannot be read because an
asynchronous method is in process.

CapDiscrepancy Property, CurrencyCashList Property, dispenseCash Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 227

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

Updated in Release 1.11

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when the Cash Changer has accepted cash.
This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: in#32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Changer Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Changer devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

228

UnifiedPOS Retail Peripheral Architecture Chapter 6
Cash Changer

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash

Attributes

Remarks

See Also

Changer device.

This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN _STATUS EMPTY Some cash slots are empty.

CHAN_STATUS NEAREMPTY Some cash slots are nearly empty.

CHAN _STATUS EMPTYOK No cash slots are either empty or nearly
empty.

CHAN_STATUS FULL Some cash slots are full.

CHAN _STATUS NEARFULL Some cash slots are nearly full.

CHAN _STATUS FULLOK No cash slots are either full or nearly full.

CHAN STATUS JAM A mechanical fault has occurred.

CHAN_STATUS JAMOK A mechanical fault has recovered.

CHAN _STATUS ASYNC Asynchronously performed method has
completed.

Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 7

Cash Drawer

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

UnifiedPOS Retail Peripheral Architecture

230

Chapter 7
Cash Drawer

Properties (Continued)

Specific Type
CapStatus: boolean
CapStatusMultiDrawerDetect: boolean

DrawerOpened: boolean

Methods (UML operations)

Mutability
{ read-only }
{ read-only }
{ read-only }

Version

1.0
1.5
1.0

May Use After
open
open

open & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception } :
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open } :
release (): 1.0
void { raises-exception, use after open, claim })
checkHealth (level: int32): 1.0
void { raises-exception, use after open, enable } Note :
clearInput (): Not
void {} supported
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: int32, inout obj: object): 1.0
void { raises-exception, use after open } :
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
Specific
Name
openDrawer (): 1.0
void { raises-exception, use after open, enable } Note ’
waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32): 1.0

void { raises-exception, use after open, enable }

Note

Note: Also requires that no other application has claimed the cash drawer.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 231

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.0

Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

232

UnifiedPOS Retail Peripheral Architecture

Chapter 7
Cash Drawer

General Information

<<exception>>
UposException
(from upos)

<

<~

The Cash Drawer programmatic name is “CashDrawer”.

Capabilities

The Cash Drawer Control has the following capability:

* Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

« Drawer status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where the
drawer is the only drawer accessible via a hardware port.

* Drawer unique status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where more
than one drawer is accessible via the same hardware port.

Cash Drawer Class Diagram Updated in Release 1.8

The following diagram shows the relationships between the Cash Drawer classes.

<<Interface>>
BaseControl
(fromupos)

<<sends>>

IS

<<sends>>\

>

<<uses>>

<<utility>>
UposConst
(from upos)

<<utility>>
CashDrawerConst
(from upos)

<<uses>> 7
e

<<Interface>>
CashDrawerControl

(from upos)

Q><<capability>> CapStatus : boolean
t%«capability» CapStatusMultiDrawerDetect : boolean
t%<<prop>> DrawerOpened : boolean

openDrawer() : void
SwaitForDrawerClose(beepTimeout : int32, beepFrequency : int32, beepDuration : int32, beepDelay : int32) : void

7

<<event>>

StatusUpdateEvent

(from events)

<<prop>> Status: int32

fires

<<event>>
DirectlOEvent
(from events)

<<<prop>> EventNumber : int32
¢<<prop>> Data : int32
ca<<prop>> Obj : object

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

233

Cash Drawer Sequence Diagram Updated in Release 1.8

The following sequence diagram show the typical usage of a Cash Drawer open()
- setDeviceEnabled(true) > getDrawerOpened() =2 openDrawer(); as well as
showing the unique sharing model of the Cash Drawer device when used with
multiple control instances open on the same physical device but by different

applications.

NOTE: we are assuming that the :ClientApp(s) already successfully opened the controls. This
means that the platform specific loading/configuration/creation code executed successfully.

i

cd0:CashDrawer

:CashDrawer

‘ ClientApp0 H ‘ClientApp1 ‘

‘ cd1:CashDrawer

:StatusUpdate
Event

:CashDrawer
Service0

‘ Physical CD ‘

Service1 Device

| 1: setDeviceEnabledtrue) | 2: s{tDevicoEnabled(irue) | |

3: conneT or somehow have

to the hardware

rccess

5: openDrawer() ‘

J

4: oanDrawer()

U

Service returns
current state of

cash drawer

6:send oommpnd to open physical CD

|
If the command to open the physical CD
is successful then this will resultin

‘ StatusUpdateEvent delivered to any

‘ I registered listeners. This is not shown in
this diagram for simplicity.
7: setDevice#nabled(true)

‘ 8: setELeviceEnabled(lru;)\

‘ CashDrawer
device is
assumed open
successfullyand
DrawerOpened
property is now
true

9: might communjcate with device

11: openDrawer() ‘

(e.g. getcurrent drawer state)

d command to open drawer

14} claim(timeout)

.,

10: oper{Drawer()

13: clairrw(limeoul)

CashDrawer is now
open by call to cd1.
Assume thatsome
human actor closes
after open

Assume the CashDrawel

1 | |
|

15:openDrawer(‘ 1J;openDrawer() ‘

is successfully claimed
at this point by
:ClientApp1

Exception

This call results in a
UposE: ion since

‘ ‘ 17: throw Upos

18: oper#Drawer()

—

|

- —
|
|

the CashDrawer device
is claimed by the cd1

instance thatis used by
:ClientApp1

|

: send command to open CD

1#: openDrawer()
Assume that both ‘ ‘ W
:ClientApp0 and :ClientApp1

--notshown.

e

This call is
successful and
CashDrawer device

registered to receive events
‘ 22: defliver SUE to contro‘l
I

I
to all registered handlers

=

23: deliver event|
24: notify clierrl of new event

\ T

25: deliver SUE to‘conlrol

is open since cd1
claimed the device
successfully

P—

I
\
26: deliver event|
| 27: notify c‘iemofnew event

|
to all registered handle‘rs

StatusUpdateEventis delivered
to all registered handlers, even
though, in the situation above,
only:ClientApp1 is allowed to
call openDrawer() - since it
successfully claimed the CD.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 7
234 Cash Drawer

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

* After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

* Ifmore than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
delivered to all of these applications.

* Ifone application claims the cash drawer, then only that application may call
openDrawer and waitForDrawerClose. This feature provides a degree of
security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 235

Properties (UML attributes)
CapStatus Property

Syntax

Remarks

Errors

CapStatus: boolean { read-only, access after open }

If true, the drawer can report status. If false, the Service is not able to determine
whether the cash drawer is open or closed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax

Remarks

Errors

See Also

CapStatusMultiDrawerDetect: boolean { read-only, access after open }

If true, the status unique to each drawer in a multiple cash drawer conﬁguration1
can be reported.

If false, the following possibilities exist:
DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it
might be the particular drawer in question. This case can occur in multiple cash
drawer configurations where only one status is reported indicating either a) all
drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or
printer supports opening more than one cash drawer independently via the same
channel or hardware port. A typical example is a configuration where a “Y” cable,
connected to a single hardware printer port, has separate drawer open signal lines
but the drawer open status from each of the drawers is “wired-or” together. It is not
possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapStatus Property, DrawerOpened Property.

L Multiple cash drawer configuration -- A hardware configuration where a printer or

terminal controls more than one cash drawer independently via the same channel or
hardware port. A typical example is a configuration with a “Y”’ cable connected to a
single hardware port that controls two cash drawers.

UnifiedPOS Version 1.11 -- Released January 15, 2007

236

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Drawer

DrawerOpened Property

Syntax

Remarks

Errors

See Also

DrawerOpened: boolean { read-only, access after open }
If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status
reporting, and this property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a
DrawerOpened value of true indicates at least one drawer is open, and it might be
the particular drawer in question in a multiple cash drawer configuration. See
CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 237

Methods (UML operations)

openDrawer Method

Syntax

Remarks

Errors

openDrawer ():
void { raises-exception, use after open-enable }

Opens the drawer.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

waitForDrawerClose Method

Syntax

Remarks

Errors

See Also

waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: in#32, beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert
beeper.

beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be
sounded.

beepDelay Number of milliseconds between the sounding of beeper
tones.

Waits until the cash drawer is closed. If the drawer is still open after beep Timeout
milliseconds, then the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert
beeper. However, by setting these parameters the application will insure that the
system alert beeper will be utilized if it is present.

Unless a UposException is thrown, this method will not return to the application
while the drawer is open. In addition, in a multiple cash drawer configuration
where the CapStatusMultiDrawerDetect property is false, this method will not
return to the application while any of the drawers are open. When all drawers are
closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this
method will return immediately.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

CapStatus Property, CapStatusMultiDrawerDetect Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

238

UnifiedPOS Retail Peripheral Architecture Chapter 7
Cash Drawer

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 {read-write}
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Drawer Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Drawer devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 239

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes.

Attributes

Remarks

See Also

This event contains the following attribute:

Attributes Type Description

Status int32 The status reported from the Cash Drawer.
The Status property has one of the following values:

Value Meaning

CASH _SUE DRAWERCLOSED The drawer is closed.
CASH_SUE DRAWEROPEN The drawer is open.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.

If CapStatus is false, then the device does not support status reporting, and this
event will never be delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE _DRAWEROPEN
value indicates that at least one cash drawer is open and it might be the particular
drawer in question for multiple cash drawer configurations.

“Events” on page 39, CapStatus Property, CapStatusMultiDrawerDetect
Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 7
240 Cash Drawer

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 8

CAT - Credit Authorization Terminal

This Chapter defines the Credit Authorization Terminal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.4 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.4 open
Claimed: boolean { read-only } 1.4 open
DataCount: int32 { read-only } 1.4 Not Supported
DataEventEnabled: boolean { read-write } 1.4 Not Supported
DeviceEnabled: boolean { read-write } 1.4 open & claim
FreezeEvents: boolean { read-write } 1.4 open
OutputID: int32 { read-only } 1.4 open
PowerNotify: int32 { read-write } 1.4 open
PowerState: int32 { read-only } 1.4 open
State: int32 { read-only } 1.4 --
DeviceControlDescription: string { read-only } 1.4 --
DeviceControlVersion: int32 { read-only } 1.4 --
DeviceServiceDescription: string { read-only } 1.4 open
DeviceServiceVersion: int32 { read-only } 1.4 open
PhysicalDeviceDescription: string { read-only } 1.4 open

PhysicalDeviceName: string { read-only } 1.4 open

UnifiedPOS Retail Peripheral Architecture Chapter 8
242 CAT - Credit Authorization Terminal

Properties (Continued)

Specific Type Mutability Version May Use After
AccountNumber: string { read-only } 1.4 open
AdditionalSecurityInformation: string { read-write } 1.4 open
ApprovalCode: string { read-only } 1.4 open
AsyncMode: boolean { read-write } 1.4 open
Balance: currency { read-only } 1.9 open
CapAdditionalSecurityInformation: boolean { read-only } 1.4 open
CapAuthorizeCompletion: boolean { read-only } 1.4 open
CapAuthorizePreSales: boolean { read-only } 1.4 open
CapAuthorizeRefund: boolean { read-only } 1.4 open
CapAuthorizeVoid: boolean { read-only } 1.4 open
CapAuthorizeVoidPreSales: boolean { read-only } 1.4 open
CapCashDeposit: boolean { read-only } 1.9 open
CapCenterResultCode: boolean { read-only } 1.4 open
CapCheckCard: boolean { read-only } 1.4 open
CapDailyLog: int32 { read-only } 1.4 open
Caplnstallments: boolean { read-only } 1.4 open
CapLockTerminal: boolean { read-only } 1.9 open
CapLogStatus: boolean { read-only } 1.9 open
CapPaymentDetail: boolean { read-only } 1.4 open
CapTaxOthers: boolean { read-only } 1.4 open
CapTransactionNumber: boolean { read-only } 1.4 open
CapTrainingMode: boolean { read-only } 1.4 open
CapUnlockTerminal: boolean { read-only } 1.9 open
CardCompanylID: string { read-only } 1.4 open
CenterResultCode: string { read-only } 1.4 open
DailyLog: string { read-only } 1.4 open
LogStatus: int32 { read-only } 1.9 open
PaymentCondition: int32 { read-only } 1.4 open
PaymentDetail: string { read-only } 1.4 open
PaymentMedia: int32 { read-write } 1.5 open
SequenceNumber: int32 { read-only } 1.4 open
SettledAmount: currency { read-only } 1.9 open
SlipNumber: string { read-only } 1.4 open
TrainingMode: boolean { read-write } 1.4 open
TransactionNumber: string { read-only } 1.4 open
TransactionType: int32 { read-only } 1.4 open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 243

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.4
void { raises-exception }

close (): 1.4
void { raises-exception, use after open }

claim (timeout: int32): 1.4
void { raises-exception, use after open }

release (): 1.4
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.4
void { raises-exception, use after open, claim, enable }

clearInput (): Not
void { } supported

clearInputProperties (): Not

void { } supported
clearOutput (): 1.4

void { raises-exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object): 1.4
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }

Specific
Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32): 1.4
void { raises-exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: inf32, amount: currency, 1.4
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: inf32, amount: currency, 1.4
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: inf32, amount: currency, taxOthers: 1.4
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

244

UnifiedPOS Retail Peripheral Architecture

Chapter 8

CAT - Credit Authorization Terminal

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

cashDeposit (sequenceNumber: int32, amount: currency, timeout: int32):
void { raises-exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open, claim, enable }

lockTerminal ():
void { raises-exception, use after open, claim, enable }

unlockTerminal ():
void { raises-exception, use after open, claim, enable }

Events (UML. interfaces)

Type Mutability
upos::events::DataEvent Not supported
upos::events::DirectlOEvent

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent

ErrorCode: int32 { read-only }

ErrorCodeExtended: int32 { read-only }

ErrorLocus: int32 { read-only }

ErrorResponse int32 { read-write }
upos::events::OutputCompleteEvent

OutputID: int32 { read-only }
upos::events::StatusUpdateEvent

Status: int32 { read-only }

1.4

1.4

1.4

1.9

1.4

1.9

1.9

Version

1.4

1.4

1.4

1.4

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

245

General Information

The CAT programmatic name is “CAT”.

Description of terms

Authorization method

Methods defined by this device class that have the Authorize prefix in their
name. These methods require communication with an approval agency.
Authorization operation

The period from the invocation of an authorization method until the
authorization is completed. This period differs depending upon whether
operating in synchronous or asynchronous mode.

Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card
reader, receipt printing device, and a communications device. CAT devices
are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message
formatting, and communication functions of an electronic funds transfer
(EFT) operation from an application.

Purchase

The transaction that allows credit card or debit card payment at the POS. It is
independent of payment methods (for example, lump-sum payment, payment
in installments, revolving payment, etc.).

Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.

Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This
differs from cancel purchase in that a cancel purchase operation can often be
handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.
Authorization Completion

The state of a purchase when the response from the approval agency is
“suspended”. The purchase is later completed after a voice approval is
received from the card company.

Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual
purchase with customer's credit card presentation and card entry at CAT.
Cancel Pre-Authorization

The transaction to request canceling pre-authorization.

UnifiedPOS Version 1.11 -- Released January 15, 2007

246

UnifiedPOS Retail Peripheral Architecture Chapter 8

CAT - Credit Authorization Terminal

Card Check

The transaction to perform a negative card file validation of the card presented
by the customer. Typically negative card files contain card numbers that are
known to fail approval. Therefore the Card Check operation removes the need
for communication to the approval agency in some instances.

Daily log

The daily log of card transactions that have been approved by the card
companies.

Payment condition

Condition of payment such as lump-sum payment, payment by bonus,
payment in installments, revolving payment, and the combination of those
payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

Approval agency

The agency to decide whether or not to approve the purchase based on the card
information, the amount of purchase, and payment type. The approval agency
is generally the card company.

Capabilities

The CAT control is capable of the following general mode of operation:

This standard defines the application interface with the CAT control and does
not depend on the CAT device hardware implementation. Therefore, the
hardware implementation of a CAT device may be as follows:

* Separate type (POS interlock)
The dedicated CAT device is externally connected to the POS (for
instance, via an RS-232 connection).
e Built-in type
The hardware structure is the same as the separate type but is installed
within the POS housing.
The CAT device receives each authorization request containing a purchase
amount and tax from CAT control.

The CAT device generally requests the user to swipe a magnetic card when it
receives an authorization request from CAT control.

Once a magnetic card is swiped at the CAT device, the device sends the
purchase amount and tax to the approval agency using the communications
device.

The CAT device returns the result from the approval agency to the CAT
control. The returned data will be stored in the authorization properties by the
CAT control for access by applications.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

247

Electronic Money Device: Added in Release 1.9

The CAT Device Category is extended to support an Electronic Money Device that
has the following attributes.

A CAT device typically consists of a display, keyboard, magnetic stripe
reader, receipt printing device, and a communications device. CAT devices
are predominanly used in Japan where they are required by law. Essentially, a
CAT device can be considered a device that shields the encryption message
formatting and communications functions of an Electronic Funds Transfer
(EFT) operation from an application.

The Electronic Money Device receives the tendering information (amount of
tender, tax, and other transaction based information) from CAT control, and
then starts the authorization processing.

When the Electronic Money Device is required, a Credit Card swipe on the
CAT device is generally required for authorization.

When a Card [Contact Type / Contactless Type] is input by the Electronic
Money Device, it is formatted into the authorization format with the
transaction information and then communicated for authorization.

When the authorization is completed, the Electronic Money Device sends the
settlement result to CAT control. The settlement result is stored by the CAT
control and passed back to the calling application.

The Electronic Money Device may save settlement result as DealingLog in
the memory of the device. The device may also send DealingLog to the Center
by settlement processing.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8

248 CAT - Credit Authorization Terminal

CAT Class Diagram Updated in Release 1.9

<<utility>> <<exception>>
UposConst UposException
(from upos) (from upos)
[N A
<<sends>>
<<ewent>> <<uses> <<Interface>>
ErrorEvent CATControl
(from events) (from upos)
[&3<<prop>> AccountNumber : string
&< <prop>> AdditionalSecurityInformation : string
&<<prop>> ApprovalCode : string
| E¥<<prop>> AsyncMode : boolean
<<event>> fires &<<prop>> Balance : currency
OutputCompleteEvent [&<<capability>> CapAdditionalSecurityInformation : boolean
(from events) < <capability>> CapAuthorizeCompletion : boolean
& <<capability>> CapAuthorizePreSales : boolean
< < <capability>> CapAuthorizeRefund : boolean
i & <<capability>> CapAuthorizeVoid : boolean
<<event>> fires &<<capability>> CapAuthorizeVoidPreSales : boolean
StatusUpdateEvent < <capability>> CapCashDeposit : boolean
(from events) & <<capability>> CapCenterResultCode : boolean
%< <capability>> CapCheckCard : boolean
fires &<<capability>> CapDailyLog : int32
[&<<capability>> Caplnstallments : boolean
&< <capability>> CapLockTerminal : boolean
<<ewni>> &<<capability>> CapLogStatus : boolean
) [&<<capability>> CapPaymentDetail : boolean
DirectlOEvent fires &< <capability>> CapTaxOthers : boolean
(from events) <""*‘f‘—\,,,,\7% & <<capability>> CapTransactionNumber : boolean
| Bl<<capability>> CapTrainingMode : boolean

& <<capability>> CapUnlock Terminal : boolean
[&<<prop>> CardCompanyID : string
[@<<prop>> CenterResultCode : string
&<<prop>> DailyLog : string
B¥<<prop>> LogStatus : int32
&<<prop>> PaymentCondition : int32
&<<prop>> PaymentDetail : string
&<<prop>> PaymentMedia : int32
&<<prop>> SequenceNumber : int32
B¥<<prop>> SettledAmount : currency
&<<prop>> SlipNumber : string
&<<prop>> TrainingMode : boolean
&< <prop>> TransactionNumber : string
&<<prop>> TransactionType : int32

MaccessdailyLog()
®authorizeCompletion()
®authorizePreSales()
authorizeRefund()
®authorizeSales()
$authorizeVoid()
®authorizeVoidPreSales()
®cashDeposit()
®checkCard()

®lock Terminal()
Sunlock Terminal()

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

249

Model

The general models for the CAT control are shown below:

* The CAT control basically follows the output device model. However,
multiple methods cannot be issued for asynchronous output; only one

outstanding asynchronous request is allowed.

* The CAT control issues requests to the CAT device for different types of
authorization by invoking the following methods.

Function Method name Corresponding Cap property
Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund
Authorization Completion authorizeCompletion CapAuthorizeCompletion
Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization

authorizeVoidPreSales

CapAuthorizeVoidPreSales

* The CAT control issues requests to the CAT device for special processing
local to the CAT device by invoking the following methods.

Function Method name Corresponding Cap property
Card Check checkCard CapCheckCard
Daily log accessDailyLog CapDailyLog

* The CAT control stores the authorization results in the following properties
when an authorization operation successfully completes:

Description

Property Name

Corresponding Cap Property

Credit Account number

AccountNumber

None

Additional information

AdditionalSecurityInformation

CapAdditionalSecurityInformation

Approval code ApprovalCode None

Card company ID CardCompanylID None

anoecLecffrom the approval CenterResultCode CapCenterResultCode
Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail
Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber
Transaction type TransactionType None

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Per

ipheral Architecture

Chapter 8

CAT - Credit Authorization Terminal

* The accessDailyLog method sets the following property

Description Property Name Corresponding Cap Property
Daily log DailyLog CapDailyLog
Electronic Money Device: Added in Release 1.9

e The CAT Control requires the Electronic Money Device to track each

settlement and closing in the DealingLog.

Function Method name Corresponding Cap property
Settlement authorizeSales None

Charge cashDeposit CapCashDeposit

Inquiry for the balances checkCard CapCheckCard

Closing DealingLog accessDailyLog CapDailyLog

Setting security lock lockTerminal CapLockTerminal
Releasing security lock unlockTerminal CapUnlockTerminal

¢ When the CAT Control receives the settlement results from the Electronic
Money Device it stores these results in the following properties:

Description Property Name Corresponding Cap Property
Card ID AccountNumber None

Additional information AdditionalSecurityInformation CapAdditionalSecurityInformation
Approval code ApprovalCode None

Settled amount Settled Amount None

Balance Balance None

Sequence number SequenceNumber None

Transaction type TransactionType None

¢ The accessDai

lyLog method sets the following property

Description

Property Name

Corresponding Cap Property

DealingLog

DailyLog

CapDailyLog

* Sequence numbers are used to validate that the properties set at completion of
a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method
has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

* The AsyncMode property determines if methods are run synchronously or
asynchronously.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

251

When AsyncMode is false, methods will be executed synchronously and their
corresponding properties will contain data when the method returns.

When AsyncMode is true, methods will return immediately to the application.
When the operation associated with the method completes, each
corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be
issued immediately after issuing a prior method; only one outstanding
asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending on
the CAT control implementation. Applications should verify that particular
Cap properties are supported before utilizing the capability dependent
methods and properties.

Results of synchronous calls to methods and writable properties will be stored
in ErrorCode. Results of asynchronous processing will be indicated by an
OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The error code from the approval agency will be stored
in CenterResultCode in either mode.

Training mode occurs continually when TrainingMode is true. To
discontinue training mode, set TrainingMode to false.

An outstanding asynchronous method can be canceled via the clearOutput
method.

The Daily log can be collected by the accessDailyLog method. Collection will
be run either synchronously or asynchronously according to the value of
AsyncMode.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
252 CAT - Credit Authorization Terminal

* Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open
- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()
- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method
- Wait for QutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()
- setDeviceEnabled (false)
- release

- close

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

253

Device Sharing

The CAT is an exclusive-use device, as follows:

After opening the device, properties are readable.
The application must claim the device before enabling it.

The application must claim and enable the device before calling methods that
manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
254 CAT - Credit Authorization Terminal

CAT Sequence Diagram Added in Release 1.7

This sequence diagram shows the typical synchronous usage of the
AuthorizeSales process of the CAT device.

:Client App :CAT :CAT Service :CAT Hardware

i open(logicalName) i i

open(logicalName) |

T claim(timeout)

claim(timeout)

I A

setDeviceEnabled(true) T

setDeviceEnabled(true)

s 7h3aymentMedia(mediaTy§e)

setPaymentMedia()

SequenceNumber

Definition of the argumeﬁ

AuthorizeSaIesI(sequenceNumber, amoulnt, tax, timeout)

{
BN N

Q}

AuthorizeSales(sequenceNumber, amount, tax, timeout)

send commands to
physical CAT

After human actor swipes the card,
the device sends the purchase amount
and tax to approval agency using the
communications device.

|_|_l

p—

1
1
Set properties on |
return from successful |
I
I

authorization.

on successful retur

Check properties ﬁ T
n. |
|

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 255

CAT State Diagram

The following diagram depicts the CAT states.

close()

ﬁ claim()
.ﬁ[Closed @ Opened Claimed]

close() release()
release()

Iset DeviceEnabled (false) clearOutput

Iset

Logging Enabled
Processing

accessDailyLog(

viceEnabled (true)

Clear Output
Processing

Method processing

Done delivering even authorizeXyz(),
checkCard()

authorizeXyz(),
[Synchronous TcheckCard() [Async Mode \

Mode

ErrorEvent OutputCompleteEvent
Processing Processing

- /

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
256 CAT - Credit Authorization Terminal

Properties (UML attributes)

AccountNumber Property Updated in Release 1.9
Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Electronic Money Device: Credit Card number of the settled account.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
AdditionalSecuritylnformation Property Updated in Release 1.7
Syntax AdditionalSecurityInformation: string { read-write, access after open }1

Remarks An application can send data to the CAT device by setting this property before
issuing an authorization method. Also, data obtained from the CAT device and not
stored in any other property as the result of an authorization operation (for
example, the account code for a loyalty program) can be provided to an application
by storing it in this property. Since the data stored here is device specific, this
should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CapAdditionalSecurityInformation Property.
ApprovalCode Property Updated in Release 1.9

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Electronic Money Device: Approval Code for the settled account.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.
If false, the authorization methods will run synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also Authorization Methods.

I In the OPOS environment, the format of this data depends upon the value of the
BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 257

Balance Property Added in Release 1.9
Syntax Balance: currency { read-only, access after open }
Remarks Electronic Money Device: The balance of Credit Card.
Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

CapAdditionalSecuritylnformation Property

Syntax

Remarks

Errors

See Also

CapAdditionalSecurityInformation: boolean { read-only, access after open }

If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

AdditionalSecurityInformation Property.

CapAuthorizeCompletion Property

Syntax

Remarks

Errors

See Also

CapAuthorizeCompletion: boolean { read-only, access after open }

If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

authorizeCompletion Method.

CapAuthorizePreSales Property

Syntax

Remarks

Errors

See Also

CapAuthorizePreSales: boolean { read-only, access after open }

If true, the authorizePreSales method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

authorizePreSales Method.

CapAuthorizeRefund Property

Syntax

Remarks

Errors

See Also

CapAuthorizeRefund: boolean { read-only, access after open }

If true, the authorizeRefund method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

authorizeRefund Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

258

UnifiedPOS Retail Peripheral Architecture Chapter 8
CAT - Credit Authorization Terminal

CapAuthorizeVoid Property

Syntax
Remarks

Errors

See Also

CapAuthorizeVoid: boolean { read-only, access after open }
If true, the authorizeVoid method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

authorizeVoid Method.

CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also authorizeVoidPreSales Method.

CapCashDeposit Property Added in Release 1.9

Syntax CapCashDeposit: boolean { read-only, access after open }

Remarks Electronic Money Device: Show the device has charged method by cashDeposit
method or not. If true, the cashDeposit method is implemented, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also cashDeposit Method.

CapCenterResultCode Property

Syntax
Remarks

Errors

See Also

CapCenterResultCode: boolean { read-only, access after open }

If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CenterResultCode Property.

CapCheckCard Property

Syntax
Remarks

Errors

See Also

CapCheckCard: boolean { read-only, access after open }
If true, the checkCard method has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

checkCard Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 259

CapDailyLog Property

Syntax
Remarks

Errors

See Also

CapDailyLog: int32 { read-only, access after open }
Shows the daily log ability of the device.

Value Meaning

CAT DL _NONE The CAT device does not have the daily log functions.

CAT DL _REPORTING The CAT device only has an intermediate total function
which reads the daily log but does not erase the log.

CAT DL SETTLEMENT The CAT device only has the “final total” and “erase
daily log” functions.

CAT DL REPORTING SETTLEMENT
The CAT device has both the intermediate total function
and the final total and erase daily log function.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DailyLog Property, accessDailyLog Method.

Caplnstallments Property

Syntax Caplnstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DailyLog Property.

CapLockTerminal Property Added in Release 1.9

Syntax CapLockTerminal: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can set the lock using the lockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also lockTerminal Method.

CapLogStatus Property Added in Release 1.9

Syntax CapLogStatus: boolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device can notify the condition of the log
by the LogStatus property, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also LogStatus Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

260

UnifiedPOS Retail Peripheral Architecture Chapter 8
CAT - Credit Authorization Terminal

CapPaymentDetail Property

Syntax

Remarks

Errors

See Also

CapPaymentDetail: boolean { read-only, access after open }
If true, the PaymentDetail property has been implemented; otherwise it is false.
This property is initialized by open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

PaymentDetail Property.

CapTaxOthers Property

Syntax

Remarks

Errors

See Also

CapTaxOthers: boolean { read-only, access after open }

If true, the item “TaxOthers” which is stored in the DailyLog property as the result
of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DailyLog Property.

CapTransactionNumber Property

Syntax

Remarks

Errors

See Also

CapTransactionNumber: boolean { read-only, access after open }

If true, the TransactionNumber property has been implemented; otherwise it is
false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

TransactionNumber Property.

CapTrainingMode Property

Syntax

Remarks

Errors

See Also

CapTrainingMode: boolean { read-only, access after open }
If true, the TrainingMode property has been implemented; otherwise it is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

TrainingMode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 261

CapUnlockTerminal Property Added in Release 1.9

Syntax CapUnlockTerminal: hoolean { read-only, access after open }

Remarks Electronic Money Device: If true, the device has a security lock and the device
can release the lock using the unlockTerminal method, otherwise false.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also unlockTerminal Method.

CardCompanylID Property

Syntax

Remarks

Errors

CardCompanylID: string { read-only, access after open }

This property is updated when an authorization operation successfully completes.
It shows credit card company ID.

The length of the ID string varies depending upon the CAT device.
This property is initialized to NULL by the open method

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CenterResultCode Property

Syntax

Remarks

Errors

CenterResultCode: string { read-only, access after open }

Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
262 CAT - Credit Authorization Terminal

DailyLog Property
Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by CR(13
decimal)+LF(10 decimal) for each transaction and is stored in ASCII code. The

[13E 2]

detailed data of each transaction is comma separated [i.e., delimited by “,” (44)].

The details of one transaction are shown as follows:

No | Item Property Corresponding Cap Property
Card company ID CardCompanyID None
2 Transaction type TransactionType None
Transaction date None None
Note 1)
4 Transaction number | TransactionNumber CapTransactionNumber
Note 3)
5 Payment condition | PaymentCondition None
6 Slip number SlipNumber None
7 Approval code ApprovalCode None
8 Purchase date None None
Note 5)
9 Account number AccountNumber None
10 Amount The argument Amount of the None
Note 4) authorization method or the
amount actually approved.
11 Tax/others The argument TaxOthers of the CapTaxOthers
Note 3) authorization method.
12 Installments None Caplnstallments
Note 3)
13 | Additional data AdditionalSecurityInformation | CapAdditionalSecurityInfor-
Note 2) mation

Notes from the previous table:

1) Format
Item Format
Transaction date YYYYMMDDHHMMSS
Purchase date MMDD

Some CAT devices may not support seconds by the internal clock. In that
case, the seconds field of the transaction date is filled with “00”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables
an application to receive data other than that defined in this specification. The
data stored here is vendor specific and should not be used for development
which places an importance on portability.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 263

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data.
In such instances, the item cannot be displayed so the next comma delimiter
immediately follows. For example, if “Amount” is 1234 yen and “Tax/others”
is missing and “Installments” is 2, the description will be “1234,,2”. This
makes the description independent of Cap property and makes the position of
each data item consistent.

4) Amount
Amount always includes “Tax/others” even if item 11 is present.
5) Purchase date

The date manually entered for the purchase transaction after approval.

Example An example of daily log content is shown below.

Item Description Meaning
Card company ID 102 JCB
Transaction type CAT TRANSACTION_SALES Purchase
Transaction date 19980116134530 1/16/199813:45:30
Transaction number 123456 123456
Payment condition CAT _PAYMENT INSTALLME | Installment 1
NT 1
Slip number 12345 12345
Approval code 0123456 0123456
Purchase date None None
Account number 1234123412341234 1234-1234-1234-1234
Amount 12345 12345JPY
Tax/others None None
Number of payments 2 2
Additional data 12345678 Specific information

The actual data stored in DailyLog will be as follows:

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

Electronic Money Device: Setting DealingLog which is a result of the Electronic

Money Device which does not have the communication module for closing
processing done closing processing. It may be the device which is enciphered
DealingLog to everything except for Center.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also

CapDailyLog Property, accessDailyLog Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8

264 CAT - Credit Authorization Terminal
LogStatus Property Added in Release 1.9
Syntax LogStatus: int32 { read-only, access after open }
Remarks Electronic Money Device: This property shows the status of the DealingLog of
the device.
Value Meaning
CAT LOGSTATUS OK DealingLog has enough capacity.
CAT LOGSTATUS NEARFULL DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
This property is initialized by the open method and kept current as long as the
device is enabled.
If DealingLog becomes full, depending on the device, the settlement processing
may not be able to operate.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
See Also StatusUpdateEvent Event.
PaymentCondition Property Updated in Release 1.9
Syntax PaymentCondition: int32 { read-only, access after open }
Remarks Holds the payment condition of the most recent successful authorization
operation.
This property will be set to one of the following values. See PaymentDetail for
the detailed payment string that correlates to the following PaymentCondition
values.
Value Meaning
CAT PAYMENT LUMP Lump-sum
CAT PAYMENT BONUS 1 Bonus 1
CAT _PAYMENT BONUS 2 Bonus 2
CAT _PAYMENT BONUS 3 Bonus 3
CAT _PAYMENT BONUS 4 Bonus 4
CAT _PAYMENT BONUS 5 Bonus 5
CAT PAYMENT INSTALLMENT 1 Installment 1
CAT PAYMENT INSTALLMENT 2 Installment 2
CAT PAYMENT INSTALLMENT 3 Installment 3
CAT _PAYMENT BONUS COMBINATION 1
Bonus combination payments 1
CAT PAYMENT BONUS COMBINATION 2
Bonus combination payments 2
CAT_PAYMENT BONUS COMBINATION 3
Bonus combination payments 3
CAT PAYMENT BONUS COMBINATION 4
Bonus combination payments 4
CAT PAYMENT REVOLVING Revolving
CAT _PAYMENT DEBIT Debit card
CAT _PAYMENT ELECTRONIC MONEY
Electronic Money
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
See Also PaymentDetail Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes)

265

PaymentDetail Property

Updated in Release 1.9

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. NULL means that no data is stored and
represents a string with zero length data.

PaymentCondition PaymentDetail
CAT _PAYMENT LUMP NULL
CAT PAYMENT BONUS 1 NULL

CAT _PAYMENT BONUS 2

Number of bonus payments

CAT PAYMENT BONUS 3

15 bonus month

CAT_PAYMENT BONUS_4*

Number of bonus payments, 1 bonus month, 2" bo-

nus month, 3 bonus month, 4™ bonus month, 5th bo-
nus month, 6" bonus month

CAT PAYMENT BONUS_5*

Number of bonus payments, 15 bonus month, 15t bo-
nus amount, 2" bonus month, 2" bonus amount, 3™
bonus month, 3" bonus amount, 4™ bonus month, 4th

bonus amount, 5t bonus month, 5t bonus amount, 6th
bonus month, 6 bonus amount

CAT PAYMENT INSTALLMENT 1 15 billing month, Number of payments

CAT PAYMENT_INSTALLMENT 2* 1% billing month, Number of payments, 15" amount,

2" amount, 3™ amount, 4™ amount, 5™ amount, 6
amount

CAT _PAYMENT_INSTALLMENT_3

15t billing month, Number of payments, 1% amount

CAT PAYMENT BONUS_COMBINATION 1

15t billing month, Number of payments

CAT PAYMENT BONUS_COMBINATION 2

15t billing month, Number of payments, bonus amount

CAT PAYMENT_BONUS_COMBINATION_3*

15! billing month, Number of payments, number of bo-

nus payments, 15 bonus month, 2" bonus month, 3™
bonus month, 4™ bonus month, 5™ bonus month, 6
bonus month

CAT_PAYMENT_BONUS_COMBINATION_4*

15 billing month, Number of payments, number of bo-

nus payments, 1% bonus month, 1% bonus amount, 2"
bonus month, 2" bonus amount, 3™ bonus month, 3"
bonus amount, 4t bonus month, 4M ponus amount, sth
bonus month, 5t bonus amount, 6™ bonus month, 6th
bonus amount

CAT PAYMENT_REVOLVING NULL
CAT PAYMENT DEBIT NULL
CAT PAYMENT_ELECTRONIC_MONEY NULL

*Maximum 6 installments

UnifiedPOS Version 1.11 -- Released January 15, 2007

266

UnifiedPOS Retail Peripheral Architecture

Chapter 8

CAT - Credit Authorization Terminal

The payment types and names vary depending on the CAT device. The following
are the payment types and terms available for CAT devices. Note that there are
some differences between UnifiedPOS terms and those used by the CAT devices.
The goal of this table is to synchronize these terms.

o o CAT CAT G-CAT JET-S SG-CAT Master-T
& 2 Name (Old CAT)
S = Credit Not Not ICB VISA MASTER
g ;E Card specified specified
£ E
2 S A
& £ 2 UnifiedPOS Card Company Terms
s &= g Term
) =3} A
Lump- | (None) 10 Lump-sum JLump-sum |Lump-sum |Lump-sum |Lump-sum |Lump-sum
sum
Bonus | (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1
Numberof |22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2
bonus
payments
Bonus 23 Bonus 3 Bonus 3 Does not ex- | Does not ex- | Bonus 3 Bonus 3
month(s) ist. ist.
Numberof | 24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4 Bonus 4
bonus (Up to two
payments entries for
Bonus bonus
month (1) month)
Bonus
month (2)
Bonus
month (3)
Bonus
month (4)
Bonus
month (5)
Bonus
month (6)

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes)

267

Number of
bonus
payments

Bonus
month (1)

Bonus
amount

(M

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25

Bonus 5

Bonus 5

Does not
exist.

Does not
exist.

Does not
exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

Installment 1

UnifiedPOS Version 1.11 -- Released January 15, 2007

268

UnifiedPOS Retail Peripheral Architecture

Chapter 8

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62

Installment 2

Installment 2

Does not
exist.

Does not
exist.

Does not
exist.

Does not
exist.

Payment
start
month

Number of
payments

Initial
amount

63

Installment 3

Installment 3

Installment 2

Installment 2

Does not
exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32

Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
exist.

Does not
exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes)

269

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33

Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
exist.

Does not
exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

UnifiedPOS Version 1.11 -- Released January 15, 2007

270

UnifiedPOS Retail Peripheral Architecture

Chapter 8

CAT - Credit Authorization Terminal

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34

Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4

(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None)

80

Revolving

Revolving

Revolving

Revolving

Revolving

Revolving

Debit

(None)

110

Debit

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

Errors

See Also

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapPaymentDetail Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 271

PaymentMedia Property Updated in Release 1.9

Syntax
Remarks

Errors

PaymentMedia: int32 { read-write, access after open }
Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the CAT device, not by the POS application.

Value Meaning

CAT MEDIA UNSPECIFIED None specified.
CAT MEDIA CREDIT Credit card.
CAT MEDIA DEBIT Debit card.
CAT MEDIA_ELECTRONIC MONEY
Electronic Money.

This property is initialized to CAT _MEDIA UNSPECIFIED by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT
control set this property to zero.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

SettledAmount Property Added in Release 1.9

Syntax SettledAmount: currency { read-only, access after open }

Remarks Electronic Money Device: Setting real amount of the settlement.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also authorizeSales Method, cashDeposit Method.

SlipNumber Property Updated in Release 1.7

Syntax SlipNumber: string { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

272

UnifiedPOS Retail Peripheral Architecture Chapter 8
CAT - Credit Authorization Terminal

TrainingMode Property

Syntax

Remarks

Errors

TrainingMode: boolean { read-write, access after open }

If true, each operation will be run in training mode; otherwise each operation will
be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from
training mode, because it will not automatically be set to false after the completion
of an operation.

This property will be initialized to false by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL CapTrainingMode is false.

TransactionNumber Property

Syntax

Remarks

Errors

TransactionNumber: string { read-only, access after open }
Stores a “transaction number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

TransactionType Property Updated in Release 1.10

Syntax

Remarks

Errors

TransactionType: int32 { read-only, access after open }
Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT _TRANSACTION_SALES Sales

CAT _TRANSACTION_VOID Cancellation
CAT_TRANSACTION_ REFUND Refund purchase

CAT _TRANSACTION_COMPLETION Purchase after approval

CAT TRANSACTION_PRESALES Pre-authorization

CAT _TRANSACTION _CHECKCARD Card Check

CAT TRANSACTION_VOIDPRESALES Cancel pre-authorization approval
CAT_TRANSACTION CASHDEPOSIT Charge

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 273

Methods (UML operations)
accessDailyLog Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber The sequence number to get daily log.
type Specify whether the daily log is intermediate total or

final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Application must specify one of the following values for #ype for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Electronic Money Device: Gets the DealinglLog from the Electronic Money
Device to send to the Center. If the Electronic Money Device has communication
capabilities, the DealingLog will be sent from the Electronic Money Device to the
Center and nothing is stored in the DailyLog. Otherwise, the DealingLog is stored
in the DailyLog Property.

Value Meaning

CAT DL _REPORTING Intermediate total.

CAT DL SETTLEMENT Final total and erase.
Electronic Money Device: Closing DealingLog of
the Electronic Money device.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid or unsupported #ype or timeout parameter was
specified, or CapDailyLog is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapDailyLog Property, DailyLog Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

274

UnifiedPOS Retail Peripheral Architecture Chapter 8

CAT - Credit Authorization Terminal

authorizeCompletion Method

Syntax

Remarks

Errors

See Also

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified

by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeCompletion Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 275

authorizePreSales Method

Syntax

Remarks

Errors

See Also

authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizePreSales Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
276 CAT - Credit Authorization Terminal

authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 277

authorizeSales Method

Syntax

Remarks

Errors

authorizeSales (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

UnifiedPOS Version 1.11 -- Released January 15, 2007

278

UnifiedPOS Retail Peripheral Architecture Chapter 8

CAT - Credit Authorization Terminal

authorizeVoid Method

Syntax

Remarks

Errors

See Also

authorizeVoid (sequenceNumber: inf32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoid Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 279

authorizeVoidPreSales Method

Syntax

Remarks

Errors

See Also

authorizeVoidPreSales (sequenceNumber: inf32, amount: currency,
taxQOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have
not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with CAT device and / or CAT control.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapAuthorizeVoidPreSales Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

280

UnifiedPOS Retail Peripheral Architecture Chapter 8

CAT - Credit Authorization Terminal

cashDeposit Method

Syntax

Remarks

Errors

See Also

Added in Release 1.9

cashDeposit (sequenceNumber: in#32, amount: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for charge.

amount Amount of money for charge.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Chargings.

The amount is stored on the Electronic Money Device.

If timeout is FOREVER(-1), a timeout will not occur and the process will wait
forever until the Electronic Money Device responds.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapCashDeposit is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

CapCashDeposit Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 281

checkCard Method Updated in Release 1.9

Syntax

Remarks

Errors

See Also

checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description
sequenceNumber Sequence number for approval.
timeout The maximum waiting time (in milliseconds) until the

response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Card Check is intended.
Card Check will be made as specified by sequenceNumber-.

Electronic Money Device:
The check of the Balance will be done by the specified sequenceNumber. The
Balance will be stored in the Balance

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.

E BUSY The CAT device cannot accept any commands now.

Balance Property, CapCheckCard Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

282

UnifiedPOS Retail Peripheral Architecture Chapter 8
CAT - Credit Authorization Terminal

lockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

lockTerminal ():
void { raises-exception, use after open-claim-enable }

Sets the security lock. When locked, the Electronic Money Device cannot accept
any commands.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapLockTerminal Property.

unlockTerminal Method Added in Release 1.9

Syntax

Remarks

Errors

See Also

unlockTerminal ():
void { raises-exception, use after open-claim-enable }

Releases the security lock.

AdditionalSecurityInformation property is used when key information is
required.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E ILLEGAL The Electronic Money Device does not have a security
lock function.

E _EXTENDED The detail code has been stored in ErrorCodeExtended.
E BUSY The CAT device cannot accept any commands now.

CapUnlockTerminal Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 283

Events (UML interfaces)

DirectlOEvent

<<event>>

Description

Attributes

Remarks

See Also

ErrorEvent

upos::events::DirectlOEvent
EventNumber: int32 {read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific CAT Service to provide events to the application that
are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber

and the Service. This attribute is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s CAT devices which may not have any
knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method

Updated in Release 1.9

<< event>> upos::events::ErrorEvent

Description

Attributes

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Notifies the application that a CAT error has been detected and suitable response
by the application is necessary to process the error condition.
This event contains the following attributes:

Attributes Type Description

ErrorCode int32 The code which caused the error event. See
ErrorCode for the values.

ErrorCodeExtended int32 The extended code which caused the error
event. See ErrorCodeExtended below for

values.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred
during asynchronous action.

ErrorResponse int32 Pointer to the error event response. See

ErrorResponse below for values.

UnifiedPOS Version 1.11 -- Released January 15, 2007

284

UnifiedPOS Retail Peripheral Architecture Chapter 8
CAT - Credit Authorization Terminal

Remarks

See Also

If ErrorCode is E EXTENDED, ErrorCodeExtended will be set to one of the
following values:

Value Meaning

ECAT _CENTERERROR
An error was returned from the approval agency. The
detail error code is defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never
returned so long as CAT control is working correctly.

ECAT RESET CAT was stopped during processing by CAT reset key
(stop key) and so on.

ECAT _COMMUNICATIONERROR
Communication error has occurred between the
approval agency and CAT.

ECAT DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has
been stopped and the value of DailyLog property is
uncertain.
Electronic Money Device:
A failure will occur if the DealingLog on the device is
full and the device is attempting to be closed.

ECAT_DEFICIENT Electronic Money Device:
Because the balance is insufficient, it cannot close
settlement.

ECAT OVERDEPOSIT
Electronic Money Device:
A failure will occur if a settlement amount is attempted
that is over the chargeable amount of the charge account.

The content of the position specified by ErrorResponse will be preset to the default
value of ER_ RETRY. An application may set one of the following values.

Value Meaning

ER RETRY Retries the asynchronous processing. The error state is
exited.

ER CLEAR Clear the asynchronous processing. The error state is
exited.

Fired when an error is detected while processing an asynchronous authorize group
method or the accessDailyLog method. The control's State transitions into the
error state.

“Device Output Models” on page 45, Device Information Reporting Model on
page 50.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 285

OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputlD: int32 {read-only }

Description Notifies the application that the queued output request associated with the
OutputlD attribute has completed successfully.

Attribute This event contains the following attribute:
Attribute Type Description
OutputID int32 The ID number of the asynchronous output request that

is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 45.
StatusUpdateEvent Updated in Release 1.9

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT
device.

Electronic Money Device:
Notifies the application that there is a change in the DealingLog status of the
Electronic Money Device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
Electronic Money Device:
The Status parameter contains the DealingLog status condition.
Value Meaning

CAT LOGSTATUS OK DealingLog is enough capacity.
CAT LOGSTATUS NEARFULL
DealingLog is nearly full.
CAT LOGSTATUS FULL DealingLog is full.
Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 8
286 CAT - Credit Authorization Terminal

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 9

Check Scanner

This Chapter defines the Check Scanner device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.7 open
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.7 open
Claimed: boolean { read-only } 1.7 open
DataCount: int32 { read-only } 1.7 open
DataEventEnabled: boolean { read-write } 1.7 open
DeviceEnabled: boolean { read-write } 1.7 open & claim
FreezeEvents: boolean { read-write } 1.7 open
OutputID: int32 { read-only } 1.7 Not Supported
PowerNotify: int32 { read-write } 1.7 open
PowerState: int32 { read-only } 1.7 open
State: int32 { read-only } 1.7 --
DeviceControlDescription: string { read-only } 1.7 --
DeviceControlVersion: int32 { read-only } 1.7 --
DeviceServiceDescription: string { read-only } 1.7 open
DeviceServiceVersion: int32 { read-only } 1.7 open
PhysicalDeviceDescription: string { read-only } 1.7 open

PhysicalDeviceName: string { read-only } 1.7 open

UnifiedPOS Retail Peripheral Architecture Chapter 9
288 Check Scanner

Properties (Continued)

Specific Type Mutability Version — May Use After
CapAutoContrast: boolean { read-only } 1.9 open
CapAutoGenerateFileID: boolean { read-only } 1.7 open
CapAutoGeneratelmageTagData: boolean { read-only } 1.7 open
CapAutoSize: boolean { read-only } 1.7 open
CapColor: int32 { read-only } 1.7 open
CapConcurrentMICR: boolean { read-only } 1.7 open
CapContrast: boolean { read-only } 1.9 open
CapDefineCropArea: boolean { read-only } 1.7 open
CapImageFormat: int32 { read-only } 1.7 open
CaplmageTagData: boolean { read-only } 1.7 open
CapMICRDevice: boolean { read-only } 1.7 open
CapStorelmageFiles: boolean { read-only } 1.7 open
CapValidationDevice: boolean { read-only } 1.7 open
Color: int32 { read-write } 1.7 open
ConcurrentMICR: boolean { read-write } 1.7 open
Contrast: int32 { read-write } 1.9 open & enable
CropAreaCount: int32 { read-only } 1.7 open
DocumentHeight: int32 { read-write } 1.7 open
DocumentWidth: int32 { read-write } 1.7 open
FileID: string { read-write } 1.7 open
FileIndex: int32 { read-write } 1.7 open
ImageData: binary { read-only } 1.7 open
ImageFormat: int32 { read-write } 1.7 open
ImageMemoryStatus: int32 { read-only } 1.7 open & claim
ImageTagData string { read-write } 1.7 open
MapMode: int32 { read-write } 1.7 open
MaxCropAreas: int32 { read-only } 1.7 open
Quality: int32 { read-write } 1.7 open
QualityList: string { read-only } 1.7 open
RemainingIlmagesEstimate: int32 { read-only } 1.7 open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary

289

Methods (UML operations)

Common

Name

open (logicalDeviceName: string):

void { raises-exception }
close ():

void { raises-exception, use after open }
claim (timeout: int32):

void { raises-exception, use after open }
release ():

void { raises-exception, use after open, claim }
checkHealth (level: int32):

void { raises-exception, use after open, claim, enable }
clearInput ():

void { raises-exception, use after open, claim }
clearInputProperties ():

void { raises-exception, use after open, claim }
clearOutput ():

void { }

directlO (command: int32, inout data: int32, inout obj: object):

void { raises-exception, use after open, claim }

Version
1.7

1.7

1.7

1.7

1.7

1.7

1.10
Not supported

1.7

compareFirmwareVersion(firmwareFileName: string,out result: int32):1.9

void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string):

void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string):

void { raises-exception, use after open, claim, enable }

Specific
beginInsertion (timeout: int32):

void { raises-exception, use after open, claim, enable }
beginRemoval (timeout: inf32):

void { raises-exception, use after open, claim, enable }
clearImage (by: int32):

void { raises-exception, use after open, claim, enable }
defineCropArea (cropArealD: int32, x: int32,y: int32,

cx: int32, ¢y: int32):

void { raises-exception, use after open, claim, enable }
endInsertion ():

void { raises-exception, use after open, claim, enable }
endRemoval ():

void { raises-exception, use after open, claim, enable }
retrievelmage (cropArealD: int32):

void { raises-exception, use after open, claim, enable }
retrieveMemory(by: int32):

void {raises-exception, use after open, claim, enable }
storelmage (cropArealD: inf32):

void { raises-exception, use after open, claim, enable }

1.8

1.8

1.9

1.8

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

1.7

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture

Chapter 9

290 Check Scanner
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent 1.7
Status: int32 { read-only }
upos::events::DirectlOEvent 1.7
EventNumber: int32 { read-only }
Data: . .
Obj: int32 { read-write }
object { read-write }
upos::events::ErrorEvent 1.7
ErrorCode: int32 { read-only }
ErrorCodeExtended: K
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }
int32 { read-write }
upos::events::OutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent 1.7
Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 291

General Information

The Check Scanner programmatic name is “CheckScanner”.

Capabilities

The primary purpose of this device is to capture the image of a personal or business
check for Electronic Check Conversion. However, other documents (vouchers,
signature receipts, etc.) may be scanned if they fall within the capture size
parameters of the Check Scanner. Therefore, in the description used in this
standard the overall term “document” may be used to indicate the multiplicity of
uses of which the device may be capable. When the term “check” is used, it should
be viewed as a special form of a “document” as an example.

The Check Scanner Control has the following minimal set of capabilities:

* Reads image data from a Check Scanner device.

* Has programmatic control of check insertion, reading, and removal. For some
Check Scanner devices, this will require no processing in the Control since the
device may automate many of these functions.

The Check Scanner Control may have the following additional capabilities:

* The Check Scanner may store successive check images in its hardware
memory.

* Cropping of areas of interest within the check image may be supported by the
Check Scanner to aid in the reduction of the memory needed to transmit or
store the check image data.

* The retrievelmage data is deposited in the ImageData property in binary
form.

* The Check Scanner may allow for retrieval of images stored in its hardware
memory.

* The Check Scanner may support Image tag data information to identify the
check image.

* The application reads the contents of ImageData property when it wants to
further process the check image.

* The Check Scanner device may be physically attached to or incorporated into
a check validation print device and/or a MICR device. If this is the case, once
a check is inserted via Check Scanner Control methods, the check can still be
used by the Printer and MICR Control prior to check removal.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9

292 Check Scanner

Check Scanner Class Diagram Updated in Release 1.9

The following diagram shows the relationships between the Check Scanner

classes.
<<sends>>

<<exception>> <<Interface>> <<uses>> <<utility>> <<utility>>
UposException BaseControl UposConst CheckScannerConst

(from upos) (fromupos) = (om upos) (from upos)

<<ust >>
<<sends>>

<<event>> <<Interface>>
DataEvent CheckScannerControl
(from events) (from upos)

[G<<prop>> Status : int32

<<fires>>

<<ewent>>
DirectlOEvent
(from events)

[&<<prop>> EventNumber : int32
[G<<prop>> Data : int32
[3<<prop>> Obj : object

<<fires>>

<<fires>>

<<event>>
ErrorEvent
(from events)

G <<prop>> ErrorCode : int32
[i<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32

g <<prop>> EmorResponse : int32

<<event>>
StatusUpdateEvent

(from events)

8<<prop>> Status : int32

<<fires>>

2 < <capability>> CapAutoContrast : boolean
<<capability>> CapAutoGenerateFilelD : boolean
<capability>> CapAutoGeneratelmageTagData : boolean

<capability>> CapStorelmageFiles : boolean
<<capability>> CapValidationDevice : boolean
<prop>> Color : int32

<prop>> ConcurrentMICR : boolean
<<prop>> Contrast : int32

<prop>> CropAreaCount : int32

<prop>> DocumentHeight : int32
<<prop>> DocumentWidth : int32

<prop>> FilelD : string

<prop>> Filelndex : int32

<<prop>> ImageData : binary

<prop>> ImageFormat : int32

<prop>> ImageMemoryStatus : int32
<<prop>> ImageTagData : string

<prop>> MapMode : int32

<prop>> MaxCropAreas : int32

<<prop>> Quality : int32

<prop>> QualityList : string

<<prop>> Remaining ImagesEstimate : int32

.beginlnser‘tion(timeout :int32) : void

beginRemoval(timeout : int32) : void

®clearimage(by : int32) : void

efineCropArea(cropArealD : int32, x : int32,y : int32, cx : int32, cy : int32) : void
‘endlInsertion() : void

.endRemovaI() :void

retrievelmage(cropArealD : int32) : void

[BretrieveMemory(by : int32) : void

.smrelmage(cropAreaID :int32) : void

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

293

Model Updated in Release 1.11

The Check Scanner Control follows the general “Input Model”. One point of

difference is that the Check Scanner Control requires the execution of methods to

insert and remove the check for processing. Therefore, this Control requires more
than simply setting the DataEventEnabled property to true in order to receive
data. The basic model is as follows:

* The Check Scanner Control is opened, claimed, and enabled.

» Starting with Version 1.9, the application has the ability to adjust the darkness
of the scanned image for devices that have the ability to adjust the scan
mechanism so that it can darken or lighten the image. The CapContrast
property controls whether the device supports this feature.

* When the beginInsertion method is called, the Check Scanner is ready to read
the check within the specified time as indicated by the time-out value. If the
check is not inserted before the time-out value expires, a UposException is
raised.

¢ Inthe event of a time-out, the Check Scanner device will remain in a state that
allows a check to be inserted. The application may provide an operator prompt
which requests that a check be inserted. Following this prompt, the application
would then reissue the beginInsertion method and wait for the check to be
inserted.

* Once a check is inserted, the beginInsertion method returns and the
application calls the endInsertion method, which results in the Check
Scanner device exiting the check insertion mode and causes the check image
to be captured.

* Following the endInsertion method, the scan image data is stored in a
working buffer memory area and a StatusUpdateEvent will occur to
indicate that a successful scan image process has taken place. No
DataEvent is enqueued since data has not been transferred to the
ImageData property at this point.

* The application must use the retrievelmage method to retrieve the
current scan image data. However, if the check image was not
successfully captured by the device, the Control enqueues a ErrorEvent
to indicate the capture was not successful.

« Ifthe AutoDisable property is true, then the device is automatically
disabled when the image is successfully captured.

* An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met. Just before delivering this event, the Control copies
data into specific properties, and disables further data events by setting the
DataEventEnabled property to false. This causes subsequent input data
to be enqueued by the Control while the application processes the current
input and associated properties. When the application has finished the
current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

* Ifthe CapAutoSize property is true, when the DataEvent is delivered,
the height and width of the of entire captured image are automatically
stored in the corresponding DocumentHeight and DocumentWidth
properties. If the CapAutoSize property is false, the application must
manually set the DocumentHeight and the DocumentWidth property
values prior to the beginInsertion method being invoked.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9
294 Check Scanner

« If the application needs to retrieve the entire or a cropped portion of the
captured image, the retrievelmage method is called. The image data is
sent from the device to the service and stored in the ImageData property.
When the corresponding DataEvent is delivered, the current image or
cropped image may be accessed by the application reading the image file
contained in the ImageData property.

* Ifthe CapStorelmageFiles property is true, then the current image, or
cropped image, can be stored in the memory by using the storelmage
method.

* Any previously stored image may be retrieved by using the
retrieveMemory method. The stored image may be identified using the
“by” parameter and requesting that the image be located by FilelD,
FileIndex, or ImageTagData.

e If CapDefineCropArea is true, then the application can use the
defineCropArea method to define crop areas in the captured image.

* AnErrorEvent (or events) is (are) enqueued if the Control encounters an
error while reading the check, and is delivered to the application when the
DataEventEnabled property is true and other event delivery
requirements are met.

* All input data enqueued by the Control may be deleted by calling the
clearInput method.

* All data properties that are populated as a result of firing a DataEvent or
ErrorEvent can be set back to their default values by calling the
clearInputProperties method.

* After processing the endInsertion DataEvent, the application may query the
CapMICRDevice property to determine if the device supports Magnetic Ink
Character Recognition. If CapMICRDevice property is true, then a MICR
read function may be performed in a “single pass” or “multiple pass” cycle but
prior to the check being removed from the device. If CapConcurrentMICR
property is true, then the device is capable of supporting a “single pass” MICR
read during an image scan. If CapConcurrentMICR property is true and
ConcurrentMICR property is true, then the MICR data would be read and
calling the MICR's beginInsertion and endInsertion methods would not be
needed to reposition the check for MICR reading.

* Additionally, after processing a DataEvent, the application should query the
CapValidationDevice property to determine if validation printing can be
performed on the check prior to check removal. If this property is true, the
application may call the Printer Control's beginInsertion and endInsertion
methods. This positions the check for validation printing. The Printer
Control's validation printing methods can then be used to perform validation
printing.

* Ifthe CaplmageTagData property is true, then an identifying name, for
example the transaction number, date and time, or some other naming
element, could be used to identify the image data. The format of the data must
be conformant to ARTS XML and reside in ImageTagData property.

¢ Once the check is no longer needed in the device, the application must call
beginRemoval of the Check Scanner, the MICR (if CapMICRDevice is
true), or the POS Printer (if CapValidationDevice is true), also specifying a
timeout value. This method will raise a UposException if the check is not

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

295

removed within the timeout period. In this case, the application may perform
any additional prompting prior to calling the method again. Once the check is
removed, the application should call the same device’s endRemoval method
to take the device out of removal mode.

In order to accommodate many different Check Scanning devices, the
application should follow the above sequence of method calls even though the
device may not physically require one or more of the methods. An example
may be a Check Scanner that is “auto armed” and is capable of detecting a
check present and initiating a Check Scan and MICR read cycle automatically.
In this case the beginInsertion, endInsertion, beginRemoval, and
endRemoval method calls may actually do no more than return from the
Service.

The model assumes that the device has a work area that can be used in the
following ways:

* When a document is scanned its image will be loaded as raw data into this
work area. When the retrievelmage method is invoked the data from the
work area may be modified by a previously defined crop area, as specified
by the cropArealD parameter, and loaded into the ImageData property.
The work area will still contain the original scanned image data.
Additional retrievelmage method calls using different crop area criteria
can then be accomplished to load the ImageData property.

* The work area contains image data either from a recently scanned image
or as a result of a retrieveMemory method. Prior to invoking the
storelmage method, the FileIndex property is set to the correct index
number (as maintained by the service) and if used, the FileID and/or
ImageTagData properties are set. When the storeImage method is
invoked the data from the work area may be modified by a previously
defined crop area, as specified by the cropArealD parameter, and stored
in the device memory. The work area will still contain the original
scanned image data. Additional storeImage method calls using different
crop area criteria can then be accomplished to store the image data in the
device’s memory. The RemaininglmagesEstimate property is adjusted
to reflect the approximate number additional images that may be stored in
the device memory based upon the file size history of previously stored
images.

¢ When the retrieveMemory method is invoked, the work area is loaded
with an image data file that was previously stored in the device memory.
Either the FileIndex, FileID, or ImageTagData may be used to locate the
previously stored image. The ImageData property is also loaded with the
retrieved image data.

In order to accommodate the various storage and retrieval architectures that
are in use for the Check Scanner device class, the model has been designed to
allow for three different addressing ways to locate previously stored image
data: FileIndex, FileID, and ImageTagData.

* The FileIndex is an addressing scheme that is automatically provided by
the service to physically store and retrieve the file data. The definition of
file data in this case includes any and/or all of the following: image data,
tag data information (that is appended and included with the image data
file), and a file identification (a file name associated with the image data

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9

296

Check Scanner

file). The FileIndex is only used by the service to save and retrieve the
scan data and its associated data elements.

The FilelD is a “file name” that may be provided automatically by the
hardware device or the service. It also may be populated by the
application prior to a storelmage method being called. Once created it
remains with the ImageData and can be used to randomly locate a
specific file for uploading to the POS system and post processing
applications.

The ImageTagData property contains a set of information about the
image that has been scanned. It is required that the format of the data be
XML and compliant to the ARTS Data Dictionary and ARTS XML
standards to ensure interoperability. Typically, it contains information
about when the image was captured, e.g., Date and Time, Store number,
Lane Number, Clerk identification, etc. This data may be pre- or post-
appended to the ImageData and remains a part of the combined data file
as a record of the origin of the data.

Device Sharing

The Check Scanner is an exclusive-use device, and adheres to the following
constraints:

The application must claim the device before enabling it.

The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 297

Check Scanner Sequence Diagram

The following sequence diagram shows the typical usage of the Check Scanner
device.

Note: we are assuming that the :ClientApp already successfully opened, claimed and enabled the device. Thisl
means that the platform specific loading/configuration/creation code executed successfully. We also assume
that the application already registered some event handlers with the controls.

D 14 StatusUpdateEvent | | CheckScanner
Service

i i

2: sptDataEventEnabled(trug)

‘ :ClientApp ‘ ‘:CheckScanner

1:|setDataEventEnabled(true,

3: sptMapMode(CHK_MM_ENGLISH)

4: setMapMode(CHK_MM_ENGLISH)

5: defineCropArea(1,0,0,1500,1000) 6: defiheCropArea(1,0,0,1500,1000)

fineCropArea(1,0,2000,CHK_CROP_AREA_BOJTOM,CHK_CROP_AREA_RIGHT)

8: defingCropArea(1,0,2000,CHK_CROP_AREA_BOTTOM,CHK_CROP_|AREA_RIGHT)

1

9: begininsertion(timeout)

{: beginlnsertion(timeout

Detect check
insertion and
scan check

[11:endinsertiong i endlnw{)//

14: set status update

15: enqueue StatusUpdateEvent to servigels internal queue
m—|

16: deliver StatusUpdateEvent [FreezeEyents == false]

17:|deliver event to all registered handlers

18:|nptify client of new event | =] oo
retrieve the

image within the

econd crop
area defined

T 19: retrievelmage(2) 20: retriewﬂﬂﬂl)/

21: nej

\Tl\ 22: copy data to new DataEvent

(I~

23: enqueue DataEvent to [service's internal queue

24: set Check $canner properties and deliver DataEvent
[DataE 1abled == true && F its == falsg]
25: deliver event to all registered handlers L]
26: notify client of new eventle 1
T 27: storelmage(1) /J 28: storelmage(1)

29: beginRemoval(timeout, 3(: beginRemoval(timeout

dicate user to start removing check

R

32: endRemoval() 33: endRemoval()

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9
298 Check Scanner

Check Scanner State Diagram

The following diagram depicts the Check Scanner control device model.

[Opened && [Closed ||

Claimed && Released ||

Enabled] . @ Disabled]

\\ /beginRemoval
/ [Failed]

/endRemuyval

/defineCropAre /clearlmage
/s age [retrieyelmage
[retrievi

Define
Retrieve
CropArea ‘ Store Image Image Retrieve Memory ‘ Clear Image

Begin
Removal

Begin
Insertion

/begininsertion

[Success]
/endRemoval

Insertlon Idle
[Success |

/endInserti

End
Removal

Insertion

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 299

Properties (UML attributes)

CapAutoContrast Property Added in Release 1.9

Syntax CapAutoContrast: boolean { read-only, access after open }

Remarks This capability indicates that the device has the ability to automatically adjust the
darkness of the image to provide the best contrast for the image.
If true, then when Contrast is set to CHK_AUTOMATIC_CONTRAST, the device
attempts to automatically adjust the contrast.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CapContrast Property, Contrast Property.

CapAutoGenerateFilelD Property

Syntax

Remarks

Errors

See Also

CapAutoGenerateFilelD: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate a file name
that can be used to reference the file containing the captured image.

If CapAutoGenerateFilelD is true, then the device can automatically create a file
name for the captured image file.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

FileID Property.

CapAutoGeneratelmageTagData Property

Syntax

Remarks

Errors

See Also

CapAutoGeneratelmageTagData: boolean { read-only, access after open }

This capability indicates the ability of the device to automatically generate tag data
used in reference to the image file for the captured image.

If CapAutoGenerateImageTagData is true, then the device can automatically
create image tag data which can be appended to the image file to provide
information about the captured image.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

ImageTagData Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9
300 Check Scanner

CapAutoSize Property
Syntax CapAutoSize: boolean { read-only, access after open }

Remarks This capability indicates the ability of the device to determine the height and width of
the document automatically.

If CapAutoSize is true, then the height and width of the scanned document will be
automatically placed in the DocumentHeight and DocumentWidth properties
when the image is captured.

If CapAutoSize is false, the height and width of the document can be manually set
in the DocumentHeight and DocumentWidth properties by the application prior to
scanning an image.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also DocumentHeight Property, DocumentWidth Property.

CapColor Property

Syntax CapColor: int32 { read-only, access after open }
Remarks This capability indicates if this device supports image formats other than bi-tonal.

CapColor is a logical OR combination of any of the following values:

Value Meaning

CHK _CCL_MONO Bi-tonal (B/W)
CHK CCL_GRAYSCALE Gray scale

CHK CCL 16 16 Colors

CHK CCL 256 256 Colors
CHK CCL_FULL Full colors

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also Color Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 301

CapConcurrentMICR Property

Syntax

Remarks

Errors

See Also

CapConcurrentMICR: boolean { read-only, access after open }

This capability indicates if this device supports a Magnetic Ink Character
Recognition read during the image scanning process.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR is false, then it would be necessary to read the MICR
data (if the device supports MICR reading) by using the MICR beginInsertion
and endInsertion methods. Usually the MICR read is performed prior to the
Check Scanning process.

This property has no meaning if the CapMICRDevice property is false.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapMICRDevice Property, ConcurrentMICR Property.

CapContrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

CapContrast: boolean { read-only, access after open }
This capability indicates the ability of the device to lighten or darken the scanned
image. This affects the image regardless of the value of the CapColor property.

If true then the darkness of the image can be adjusted using the Contrast property. If
false then the application cannot adjust the darkness of the image.

A UposException may be thrown when this property is accessed. For further
information see “Errors” on page 40.

CapAutoContrast Property, Contrast Property.

CapDefineCropArea Property

Syntax

Remarks

Errors

See Also

CapDefineCropArea: boolean { read-only, access after open }

This capability indicates if this device supports a feature that allows cropping of
areas of interest within the scan image area defined by the DocumentHeight and
DocumentWidth properties.

If CapDefineCropArea is true, one or more cropping areas are allowed;
otherwise it is set to be false.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CropAreaCount Property, MaxCropAreas Property, defineCropArea Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

302

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

CaplmageFormat Property

Syntax CaplmageFormat: int32 { read-only, access after open }

Remarks This capability indicates the image file formats that this device supports. The
image data is stored in the ImageData property using one of the following formats
supported by the CapImageFormat Property:

CaplmageFormat is a logical OR combination of any of the following values:
Value Meaning

CHK CIF NATIVE Hardware native format

CHK _CIF_TIFF TIFF format

CHK CIF_BMP BMP format

CHK CIF JPEG JPEG format

CHK CIF_GIF GIF format

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also ImageFormat Property.

CaplmageTagData Property Updated in Release 1.11

Syntax CaplmageTagData: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to utilize ARTS XML
compliant tag names to identify its scanned images.

If CapImageTagData is true, then the device can set tag data, as defined by the
ImageTagData property, to the image data file stored in the ImageData property.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also ImageTagData Property, retrievelmage Method, storelmage Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 303

CapMICRDevice Property

Syntax

Remarks

Errors

See Also

CapMICRDevice: boolean { read-only, access after open }
This capability indicates if this device supports a check MICR read function.

If CapMICRDevice is true, then the device supports a MICR read function in
addition to check scanning.

If CapConcurrentMICR is true, a check's MICR data can be captured during a
check scanning cycle (single pass scanning). For devices that are both a Check
Scanner device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If CapConcurrentMICR property is false, then it would be necessary to read the
MICR data by using the MICR beginInsertion and endInsertion methods. In this
case the MICR read is usually performed prior to the Check Scanning process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapConcurrentMICR Property, ConcurrentMICR Property.

CapStorelmageFiles Property

Syntax

Remarks

Errors

See Also

CapStorelmageFiles: boolean { read-only, access after open }

This capability indicates if this device has the ability to store check images in its
hardware memory.

If CapStorelmageFiles is true, one or more images can be stored in the memory
provided by the device by using the storelmage method.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrievelmage Method, storelmage Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9
304 Check Scanner

CapValidationDevice Property
Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks This capability indicates if this device has the ability to perform a validation print
function on the check using a print station.

If CapValidationDevice is true, a check does not have to be removed from the
Check Scanner device prior to performing validation printing. For devices that are
both a Check Scanner device as well as a POS Printer, the device will
automatically position the check for validation printing after successfully
performing a Check Scanner read. Either the Check Scanner Control’s or the POS
Printer Control’s beginRemoval and endRemoval methods may be called to
remove the check once the process is complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Color Property

Syntax Color: int32 { read-write, access after open }

Remarks This property is used to select the image scan mode for subsequent document scan
operations. The available options may be affected by the current file type as
specified by the ImageFormat property. Certain file types may not work with all
the “colors” that the device may support. It is up to the application to insure that
the proper Color and ImageFormat properties are compatible. Changing the
Color property will not affect any previously stored data currently residing in the
ImageData property.

It may contain one of the following values:

Value Meaning
CHK_CL_MONO Bi-tonal (B/W)

CHK CL GRAYSCALE Gray scale

CHK CL_16 16 Colors
CHK CL 256 256 Colors
CHK_CL_FULL Full color

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CapColor Property, ImageFormat Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 305

ConcurrentMICR Property

Syntax

Remarks

Errors

See Also

ConcurrentMICR: boolean { read-write, access after open }

This property indicates whether a MICR read should be performed at the same
time the check image is captured (single pass operation).

This property has no meaning if the CapMICRDevice is false.

If ConcurrentMICR is true, a check's MICR data is captured during a check
scanning cycle (single pass scanning). For devices that are both a Check Scanner
device and a MICR reader device, following a check scan the device will
automatically pass the MICR data to the MICR Service. The check will not need
to be re-read during the MICR beginInsertion and endInsertion methods.

If ConcurrentMICR is false and MICR data is required, then it is necessary to
read MICR data by using the MICR beginInsertion and endInsertion method
calls. In this case the MICR read is usually performed prior to the Check Scanning
process.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapConcurrentMICR Property, CapMICRDevice Property.

Contrast Property Added in Release 1.9

Syntax

Remarks

Errors

See Also

Contrast: int32 { read-write, access after enable }

This property allows the application to adjust the darkness of the image. The
property is valid only if the CapContrast property is true.

A value of 0 sets or indicates that the device will generate the lightest image possible.
A value of 100 sets or indicates that the device will generate the darkest image possi-
ble. All values between 0 and 100 produce images with varying degrees of darkness.
A value of 50 should produce an image that is the optimal brightness for the best
image under normal circumstances.

If the CapAutoContrast property is true then this property can be set to
CHK_AUTOMATIC _CONTRAST to allow the device to automatically adjust the
darkness of the image based on sensing of the paper to produce the optimal brightness
for the best image under normal circumstances.

If CapAutoContrast is false, then attempting to set this property to
CHK _AUTOMATIC CONTRAST is illegal.

If CapAutoContrast is true, then this property is initialized to
CHK_AUTOMATIC_CONTRAST when the device is enabled. If CapAutoContrast
is false, this property is initialized either to 50 or to a user configured value when the
device is enabled.

A UposException may be thrown when this property is accessed. For further
information see “Errors” on page 40.

CapAutoContrast Property, CapContrast Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

306

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

CropAreaCount Property

Syntax

Remarks

Errors

See Also

CropAreaCount: int32 { read-only, access after open }

This property indicates the number of Crop areas that have been defined which
may be applied to the captured image.

If CapDefineCropArea is false, then this property is always zero.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapDefineCropArea Property, MaxCropAreas Property, defineCropArea
Method.

DocumentHeight Property

Syntax

Remarks

Errors

See Also

DocumentHeight: int32 { read-write, access after open}

This property is used to define the height of the document scanned or the height of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the height of the scanned document will be

automatically placed in the DocumentHeight property when the image is
captured.

If CapAutoSize is false, the height of the document can be manually set in the
DocumentHeight property by the application prior to scanning a document.

This property is initialized to the maximum height supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapAutoSize Property, MapMode Property.

DocumentWidth Property

Syntax

Remarks

Errors

See Also

DocumentWidth: int32 { read-write, access after open}

This property is used to define the width of the document scanned or the width of
a document to scan. It is expressed in the unit of measure as defined by the
MapMode property.

If CapAutoSize is true, then the width of the scanned document will be
automatically placed in the DocumentWidth property when the image is
captured.

If CapAutoSize is false, the width of the document can be manually set in the
DocumentWidth property by the application prior to scanning an image.

This property is initialized to the maximum width supported by the device by the
open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapAutoSize Property, MapMode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 307

FilelD Property

Syntax

Remarks

Errors

See Also

FileID: string { read-write, access after open }

This property is used to store a “file name” associated with the image data file. If
the application chooses to create the data for this property, it must set the FileID
property prior to calling the storelmage method.

After a retrieveMemory method call the FileID property will be set to the image
data file name if available, otherwise it will be set to a NULL (0x00). Its value is
set prior to a DataEvent being delivered to the application.

If the CapAutoGenerateFileID property is true then the FileID will
automatically be generated by the hardware device or the service when the image
is scanned.

This property is initialized to NULL (0x00) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapAutoGenerateFileID Property, retrievelmage Method, retrieveMemory
Method, storelmage Method.

Fileindex Property

Syntax

Remarks

Errors

See Also

FileIndex: int32 { read-write, access after open }

This property is used to store a file location reference to the image data file when
either the storeIlmage or retrieveMemory methods are called. Its value is set prior
to a DataEvent being delivered to the application.

The FileIndex property is used only by the service in conjunction with the device
to store and locate an image data file.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

clearImage Method, retrievelmage Method, retrieveMemory Method
storelmage Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

308

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

ImageData Property

Syntax

Remarks

Errors

See Also

ImageData: binary { read-only, access after open }1

This property is used to store the image data after the retrievelmage or
retrieveMemory methods are called. If no image data was available, the
ImageData property will be set to NULL (0x00). Its value is set prior to a
DataEvent being delivered to the application.

This property is initialized to NULL (0x00) by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrievelmage Method, DataEvent.

ImageFormat Property

Syntax

Remarks

Errors

See Also

ImageFormat: int32 { read-write, access after open }

This property is used to define the data format of the image file that the device will
use when it captures an image. The availability of acceptable file types is specified
in the CapImageFormat property.

The ImageFormat property must be set before a document is scanned. Any
previously stored data in the ImageData property will not be affected by changing
the value of the ImageFormat property.

If the device provides support, it may be one of the following values:

Value Meaning

CHK IF NATIVE Hardware native format
CHK IF_TIFF TIFF format

CHK IF BMP BMP format

CHK IF JPEG JPEG format

CHK IF GIF GIF format

The default value of this property is CHK IF TIFF.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CaplmageFormat Property, Color Property, DataEvent.

I In the OPOS environment, the format of this data depends upon the value of the

BinaryConversion property. See BinaryConversion property on page A-29.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 309

ImageMemoryStatus Property

Syntax

Remarks

Errors

See Also

ImageMemoryStatus: int32 { read-only, access after open-claim }

This property is used to indicate the current memory availability status if the
device has the ability to store multiple image files. The ImageMemoryStatus
value is only valid if the CapStoreImageFiles is true.

The following values are supported.

Value Meaning

CHK IMS _EMPTY The image memory is empty.
CHK IMS OK The image memory is has storage available.
CHK IMS FULL The image memory is full.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapStorelmageFiles Property, storeImage Method.

ImageTagData Property Updated in Release 1.11

Syntax

Remarks

Errors

See Also

ImageTagData: string { read-write, access after open }

This property is used to define a string that specifies the ARTS XML compliant
tag name for the captured image data. It may be specified by the application or
auto-generated by the Check Scanner device. Information contained in the data
may refer to the date, time, lane number, location, clerk, or other information of
interest associated with the image at the time of capture.

If the application chooses to create the data for this property, it must set the
ImageTagData property prior to calling the storelmage method. After a
retrieveMemory method call, the ImageTagData property will be set if
available, otherwise it will be set to a NULL (0x00). Its value is set prior to a
DataEvent being delivered to the application.

If the CapAutoGeneratelmageTagData property is true, the ImageTagData
will automatically be generated by the hardware device or the service when the
image is scanned.

All ImageTagData information must be formatted using XML that is conformant
to the ARTS Data Model and XML Dictionary. It is the responsibility of the
Application and/or Service to encode or parse the XML data.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapAutoGenerateImageTagData Property, retrievelmage Method,
retrieveMemory Method, storeImage Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

310

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

MapMode Property

Syntax

Remarks

Errors

See Also

MapMode: int32 { read-write, access after open }

This property is used to specify the units of measure that are currently valid for the
Check Scanner.

The mapping mode defines the unit of measure used by other properties, such as
the DocumentHeight and DocumentWidth properties.

The following units of measure may be selected for storing the image:

Value Meaning

CHK_ MM _DOTS The scanner’s dot width.
CHK MM _TWIPS 1/1440 of an inch.
CHK_MM _ENGLISH 0.001 inch.

CHK MM _ METRIC 0.01 millimeter.

The value of MapMode is initialized to CHK_MM_ENGLISH when the device is
first enabled following the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DocumentHeight Property, DocumentWidth Property, defineCropArea
Method.

MaxCropAreas Property

Syntax

Remarks

Errors

See Also

MaxCropAreas: int32 { read-only, access after open }

This property is used to specify the maximum number of crop areas that the device
can support.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapDefineCropArea Property, CropAreaCount Property, defineCropArea
Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 311

Quality Property

Syntax

Remarks

Errors

See Also

Quality: int32 { read-write, access after open }

This property is used to set the resolution of the device when a scan image is to
take place. It is defined as a dpi (dots per inch) value.

Any previously stored data in ImageData property will not be affected when the
Quality property value is changed.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

QualityList Property.

QualityList Property

Syntax

Remarks

Errors

See Also

QualityList: string { read-only, access after open }

This property is used to define the resolutions that the Check Scanner is capable
of supporting.

The string data consists of comma separated values that indicate the available
scanning resolutions that the device supports measured in dots per inch (dpi). An
empty string indicates that resolution is not selectable.

An example might be “160,320”, which indicates that the device supports 160 dpi
and 320 dpi.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Quality Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9
312 Check Scanner

RemaininglmagesEstimate Property
Syntax RemaininglmagesEstimate: int32 { read-only, access after open }

Remarks This property is used to provide a “best guess” estimate of the remaining number
of images that can be stored. It is updated after every new image is stored or
cleared from the device’s available memory. The RemaininglmagesEstimate
along with the ImageMemoryStatus properties are intended to be used by the
application to monitor the amount of available image storage.

This property is initialized to a “best guess” estimate of the total number of image
files that can be stored in the device’s memory by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also ImageMemoryStatus Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 313

Methods (UML operations)

begininsertion Method

Syntax

Remarks

Errors

See Also

beginInsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if
successful. otherwise a UposException is raised. If UPOS_FOREVER (-1), the
method tries to begin insertion mode, then waits as long as needed until either the
check is inserted or an error occurs.

Called to initiate the document insertion process.

When called, the Check Scanner is made ready to receive a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
insertion mode. This method is paired with the endInsertion method for
controlling the check insertion. Although some Check Scanner devices do not
require this sort of processing, the application should still use these methods to
ensure application portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into insertion mode, a
UposException is raised. Otherwise, check insertion is monitored until either:

* The check is successfully inserted.

* The check is not inserted before timeout milliseconds have elapsed, or an error
is reported by the Check Scanner device. In this case, a UposException is
raised, The Check Scanner device remains in check insertion mode. This
allows an application to perform some user interaction and reissue the
beginInsertion method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly inserted.

beginRemoval Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

314

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

beginRemoval Method

Syntax

Remarks

Errors

See Also

beginRemoval (timeout: inz32):
void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if
successful. otherwise a UposException is raised. If UPOS_FOREVER (-1), the
method tries to begin removal mode, then waits as long as needed until either the
check is removed or an error occurs.

Called to initiate the check removal processing.

When called, the Check Scanner is made ready to remove a check by opening the
Check Scanner’s check handling “jaws” or activating a Check Scanner’s check
ejection mode. This method is paired with the endRemoval method for controlling
check removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

If the Check Scanner device cannot be placed into removal or ejection mode, a
UposException is raised. Otherwise, check removal is monitored until either:

e The check is successfully removed.

e The check is not removed before timeout milliseconds have elapsed, or an
error is reported by the Check Scanner device. In this case, a UposException
is raised, The Check Scanner device remains in check removal mode. This
allows an application to perform some user interaction and reissue the
beginRemoval method without altering the Check Scanner check handling
mechanism.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E BUSY If the Check Scanner is a combination device, the peer
device may be busy.

E ILLEGAL An invalid timeout parameter was specified.

E TIMEOUT The specified time has elapsed without the check being

properly removed.

beginInsertion Method, endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 315

clearimage Method

Syntax

Remarks

Return

See Also

clearImage (by : int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be removed from the storage.

Called to clear a specific image or all the images in the device memory.
The following values may be selected for by to initiate clearing of the memory:

Value Meaning

CHK CLR _ALL All images in the device are cleared
CHK _CLR _BY_FILEID Locate file to be cleared using the FileID property.

CHK _CLR _BY_FILEINDEX
Locate file to be cleared using the FileIndex property.

CHK CLR BY IMAGETAGDATA
Locate file to be cleared using the ImageTagData

property.
A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

* Device does not support stored images
* Device does not support clearing one image

E NOEXIST Image was not found.

CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageTagData Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

316

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

defineCropArea Method

Syntax

Remarks

Errors

See Also

defineCropArea (cropArealD: int32, x: int32, y: int32, cx: int32, cy: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD The numeric identifier for the defined crop area.
x The starting X-coordinate of the cropping area.

y The starting Y-coordinate of the cropping area.
cx The value added to the “X-coordinate” in order to

determine the “X” endpoint for the cropping area.

cy The value added to the “Y-coordinate” in order to
determine the “Y” endpoint for the cropping area.

If the cropArealD parameter is set to CHK_ CROP_AREA RESET ALL, thenall
the crop area definitions allowed (as specified by the MaxCropAreas property)
will reset their (x,y) and (cx,cy) values to (0,0) and

(DocumentWidth, DocumentHeight) respectively.

If the cropArealD parameter is set to CHK CROP_AREA ENTIRE IMAGE,
then the crop area is equal to the entire area of the scanned image.

If cx is set to the parameter CHK_CROP_AREA _ RIGHT, then the “X” endpoint
value will be set to the value of the DocumentWidth property.

If ¢y is set to the parameter CHK_CROP_AREA BOTTOM, then the “Y”
endpoint value will be set to the value of the DocumentHeight property.

This method is used to establish one or more cropping areas that may be applied
to a scanned image. The values are in MapMode units and use the top left corner
of the scanned document as the origin (0,0). All values are positive.

The defineCropArea method specifies an area of interest that is contained within
a crop box and given an index number for reference. Only the data defined by
defineCropArea index number will be sent when the retrievelmage method is
called.

The crop areas should be set before the retrievelmage method is called and will
be in effect until changed.

A crop box cannot contain an area larger than that defined by the current
DocumentHeight and DocumentWidth properties. If the resultant value for the
endpoint (x+cx) is greater than the DocumentWidth value, then the “X” endpoint
value will be set to DocumentWidth. If the resultant value for endpoint ()+cy) is
greater than the DocumentHeight value, then the “Y” endpoint value will be set
to DocumentHeight.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

CapDefineCropArea Property, CropAreaCount Property, DocumentHeight
Property, DocumentWidth Property, MapMode Property, MaxCropAreas
Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 317

endInsertion Method

Syntax

Remarks

Errors

See Also

endInsertion ():
void { raises exception, use after open-claim-enable }

Ends the document insertion processing. If this method call is successful, the
device will place the captured image in a working buffer memory area. A
StatusUpdateEvent will occur to indicate that a successful scan image process
has taken place. No DataEvent is enqueued since data has not been transferred to
the ImageData property at this point. The application must invoke retrievelmage
in order to populate the ImageData property with the scan image data.

When called, the Check Scanner is taken out of the check insertion mode. If a
check is not detected in the device, a UposException is raised with an extended
error code of ECHK NOCHECK. This allows an application to prompt the user
prior to calling this method to ensure that the form is correctly positioned.

This method is paired with the beginInsertion method for controlling check
insertion. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check insertion mode.
E EXTENDED ErrorCodeExtended = ECHK NOCHECK:

The device was taken out of insertion mode without a
check being inserted.

beginlnsertion Method, beginRemoval Method, endRemoval Method,
retrievelmage Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

318

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

endRemoval Method

Syntax

Remarks

Errors

See Also

endRemoval ():
void { raises exception, use after open-claim-enable }

Ends the document removal processing.

When called, the Check Scanner is taken out of check removal or ejection mode.
If a check is detected in the device, a UposException is raised with an extended
error code of ECHK CHECK .

This method is paired with the beginRemoval method for controlling check
removal. Although some Check Scanner devices do not require this sort of
processing, the application should still use these methods to ensure application
portability across different Check Scanner devices.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL The device is not in check removal mode.
E EXTENDED ErrorCodeExtended = ECHK _CHECK:

The device was taken out of removal mode while a
check is still present.

beginInsertion Method, beginRemoval Method, endInsertion Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 319

retrievelmage Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrievelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to the most recently scanned
image held in the working area memory of the device. If
the value is CHK_CROP_AREA ENTIRE IMAGE
then the entire area of the most recently scanned image
is retrieved.

Called to retrieve the most recently scanned image which is resident in the work
area memory to the ImageData property. If this method call is successful, the
device will deliver either a DataEvent or an ErrorEvent at a later time.

If the CapImageTagData property is true, then the ImageTagData property is set
to the ARTS XML compliant tag data associated with the image data file.

If a file name has been created for the image data by the device, then the FileID
property will be set to the file name; if none is available then the FileID property
will be set to NULL (0x00).

Many models of Check Scanner devices do not require any check handling
processing from the application. Such devices may always be capable of receiving
a check, scanning the image into their working memory area, and require no
commands to actually read and eject the check. For these type of Check Scanner
devices, the beginInsertion, endInsertion, beginRemoval and endRemoval
methods simply return, and the Control will enqueue the data until the
DataEventEnabled property is set to true. However, applications should still use
these methods to ensure application portability across different Check Scanner
devices.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL The following error has occurred:
* Cropped area that is specified by cropArealD
parameter is invalid.

CaplmageTagData Property, FileID Property, ImageData Property,
ImageTagData Property, beginlnsertion Method, beginRemoval Method,
endInsertion Method, endRemoval Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

320

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

retrieveMemory Method Updated in Release 1.11

Syntax

Remarks

Errors

See Also

retrieveMemory (by: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

by Indicates how the image file is to be located so that it can
be retrieved from the device memory storage.

Called to retrieve an image that was previously stored in memory to the work area
and the ImageData property. If this method call is successful, the device will
deliver either a DataEvent or an ErrorEvent at a later time.

The following values may be selected for by:

Value Meaning

CHK _LOCATE BY_FILEID
Locate image file using the FileID property.

CHK LOCATE BY_FILEINDEX
Locate image file using the FileIndex property.

CHK LOCATE BY IMAGETAGDATA
Locate image file using the ARTS XML compliant
ImageTagData property.

The FilelD, FileIndex, and ImageTagData properties will all be updated to
reflect their respective values associated with the image data file after this method
is called. A value for FileIndex will always be available. The FileID and
ImageTagData properties will be set to NULL (0x00) if the image file does not
have respective data to be retrieved for these properties.

The retrievelmage method cannot be called after a retrieveMemory method has
been called until a new document has been scanned.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:

e by parameter is invalid.

* The image data file could not be located due to an
invalid value stored in either the FileID, FileIndex,
or ImageTagData properties that was being used
with the by value.

FileID Property, FileIndex Property, ImageData Property, ImageTagData
Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 321

storelmage Method

Syntax

Remarks

Return

See Also

storelmage (cropArealD: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

cropArealD Identifier to specify the storage location of the crop area
parameters to be applied to image data file currently in
the buffer memory area of the device. If the value is
CHK_CROP_AREA_ENTIRE IMAGE, then an exact
image of the buffer memory is stored in the device
memory (no cropping is applied).

Called to store an image or a cropped area of the image in the memory of the
device.

The RemainingImagesEstimate property is adjusted to reflect the approximate
number additional images that may be stored in the device memory based upon the
file size history of previously stored images.

The ImageMemoryStatus property indicates whether or not the device memory
is full and is adjusted as a result of this method.

The FileID, FileIndex, and ImageTagData properties must all be updated to
reflect their respective values associated with the image data file before this
method is called. A value for FileIndex will always be available and is supplied
by the service. The FileID and/or ImageTagData properties will be set to NULL
(0x00) if the device does not support the respective property.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXIST Image already exists in the store location specified by
the FileIndex property.

E ILLEGAL One of the following errors occurred:

* Device does not support storing images

* Cropped area that is specified by cropArealD
parameter is invalid.

E FAILURE Internal error storing image.

E_EXTENDED ErrorCodeExtended = ECHK_NOROOM:
There is no more room for the image in memory.

CapStorelmageFiles Property, FileID Property, FileIndex Property,
ImageMemoryStatus Property, ImageTagData Property,
RemaininglmagesEstimate Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

322

UnifiedPOS Retail Peripheral Architecture Chapter 9
Check Scanner

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

Remarks

See Also

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when data from the Check Scanner device is available to be
read.

This event contains the following attribute:

Attributes Type Description

Status int32 Setto 0.
Before this event is delivered, the scanned check image is placed into ImageData.

ImageData Property, endInsertion Method, retrievelmage Method, storelmage
Method.

upos::events::DirectiIOEvent
EventNumber: in#32 { read-only }
Data: int32 { read-write }
Obj: object {read-write}

Provides Service information directly to the application. This event provides a
means for a vendor-specific Check Scanner Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Check Scanner devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 323

ErrorEvent

<<event>> upos::events::ErrorEvent

ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the Check Scanner

Attributes

device and a suitable response by the application is necessary to process the error
condition.

This event contains the following attributes:

Attributes Type Description

ErrorCode int32 Error code causing the error event. See a list of Error
Codes on page 40.

ErrorCodeExtended
int32 Extended Error code causing the error event. If
ErrorCode is E_ EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL _INPUT Error occurred while gathering or processing event-
driven input. No previously buffered input data is
available.

EL _INPUT DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER _CONTINUEINPUT Use only when locus is EL_INPUT DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.

Default when locus is EL_INPUT DATA.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 9

324 Check Scanner
Remarks This event is not delivered until DataEventEnabled is true and other event
delivery requirements are met, so that proper application sequencing occurs.
See Also “Device Input Model” on page 18, “Device States” on page 26.
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent

Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Check Scanner

Attributes

Remarks

See Also

device.
This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the Check Scanner
device.

The Status parameter has one of the following values:

Value Meaning

CHK_SUE_SCANCOMPLETE
The process of scanning a document image has been
successfully completed.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.

Enqueued after the endInsertion method has been called and the Check Scanner
device has successfully completed the process of scanning a new image into a
working buffer memory area. Also enqueued when the Check Scanner device
detects a power state change.

“Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 10

Coin Acceptor

This Chapter defines the Coin Acceptor device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After
AutoDisable: boolean {read-write} 1.11 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.11 open
CapPowerReporting: int32 { read-only } 1.11 open
CapStatisticsReporting: boolean { read-only } 1.11 open
CapUpdateFirmware: boolean { read-only } 1.11 open
CapUpdateStatistics: boolean { read-only } 1.11 open
CheckHealthText: string {read-only} 1.11 open
Claimed: boolean {read-only} 1.11 open
DataCount: int32 {read-only} 1.11 open
DataEventEnabled: boolean {read-write} 1.11 open
DeviceEnabled: boolean {read-write} 1.11 open & claim
FreezeEvents: boolean {read-write} 1.11 open
OutputID: int32 {read-only} 1.11 Not Supported
PowerNotify: int32 {read-write} 1.11 open
PowerState: int32 {read-only} 1.11 open
State: int32 {read-only} 1.11 -
DeviceControlDescription: string {read-only} 1.11 --
DeviceControlVersion: int32 {read-only} 1.11 --
DeviceServiceDescription: string {read-only} 1.11 open
DeviceServiceVersion: int32 {read-only} 1.11 open
PhysicalDeviceDescription: string {read-only} 1.11 open

PhysicalDeviceName: string {read-only} 1.11 open

326

UnifiedPOS Retail Peripheral Architecture

Chapter 10
Coin Acceptor

Properties (Continued)

Specific
CapDiscrepancy:
CapFullSensor:
CapJamSensor:
CapNearFullSensor:
CapPauseDeposit:
CapRealTimeData:

CurrencyCode:
DepositAmount:
DepositCashList:
DepositCodeList:
DepositCounts:
DepositStatus:
FullStatus:

RealTimeDataEnabled:

Type

boolean
boolean
boolean
boolean
boolean

boolean

string
int32
string
string
string
int32
int32

boolean

Mutability
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}

Version

May Use After
open
open
open
open
open

open

open
open
open
open
open
open, claim, & enable
open, claim, & enable

open, claim & enable

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 327
Methods (UML operations)
Common
Name Version
open (logicalDeviceName: string): 1.11
void { raises-exception }
close (): 1.11
void { raises-exception, use after open }
claim (timeout: int32): 1.11
void { raises-exception, use after open }
release (): 1.11
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.11
void { raises-exception, use after open, claim, enable }
clearInput (): 1.11
void { raises-exception, use after open, claim }
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directIO (command: int32, inout data: int32, inout obj: object): 1.11
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.11
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.11
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.11
void { raises-exception, use after open, claim, enable }
Specific
Name
adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }
beginDeposit (): 1.11
void { raises-exception, use after open, claim, enable }
endDeposit (success: int32): 1.11
void { raises-exception, use after open, claim, enable }
fixDeposit (): 1.11
void { raises-exception, use after open, claim, enable }
pauseDeposit (control: int32): 1.11
void { raises-exception, use after open, claim, enable }
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture
328

Chapter 10
Coin Acceptor

Events (UML interfaces)

Name

upos::events::DataEvent
Status:

upos::events::DirectlOEvent
EventNumber:
Data:
Obj:
upos::events::ErrorEvent

upos::events::OQutputCompleteEvent

upos::events::StatusUpdateEvent

Status:

Type Mutability Version
1.11
int32 { read-only }
1.11
int32 { read-only }
int32 { read-write }
object { read-write }
Not Supported
Not Supported
1.11
int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 329

General Information

The Coin Acceptor programmatic name is “CoinAcceptor”.
This device category was added to Version 1.11 of the specification.

Capabilities

The Coin Acceptor has the following capabilities:
* Reports the cash units and corresponding unit counts available in the Coin
Acceptor.

* The coins which are deposited into the device between the start and end of
cash acceptance are reported to the application. The contents of the report are
cash units and cash counts.

* Reports jam conditions within the device.

* Supports more than one currency.

The Coin Acceptor may also have the following additional capabilities:
* Reporting the fullness levels of the Coin Acceptor’s cash units. Conditions
which may be indicated include full, and near full states.

* Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 10
330 Coin Acceptor

Coin Acceptor Class Diagram

<<ewent>>
DataEvent
(from events)

The following diagram shows the relationships between the Coin Acceptor

classes.

<<exception>>
UposException
(from upos)

N

N

<<sends>>

<<fires>>

<<ewent>>
DirectIOEvent

(from events)

S

<<fires>>

<<ewent>>

(fom events)

StatusUpdateEvent

<<fires>>

<<utility>>
UposConst
(from upos)
N
N
N
. \
<<Interface>> <<utility>>
CoinAcceptorControl CoinAcceptorConst
from upos) uses>> (from upos)
B <<capability>> CapFullSensor : boolean
B <<capability>> CapJamSensor : Boolean -7

% <<capability>> CapNearFullSensor : boolean
%<<capability>> CapPauseDeposit : boolean

N %<<capability>> CapReal TimeData : Boolean

E5<<prop>> CurencyCode : string
B5<<prop>> DepositAmount : int32
BJ<<prop>> DepositCashList : sting

_|B5<<prop>> DepositCodeList : stiing

EJ<<prop>> DepositCounts : string
B5<<prop>> DepositStatus : int32
B5<<prop>> FullStatus : int32

B<<prop>> RealTimeDataEnabled : boolean

®adjustCash Counts(cashCounts : string)
SbeginDeposit()

SendDeposit(amount : int32)
®ixDeposit()

®pauseDeposit(control : int32)

WreadCashCounts (cashCounts : string, discrepancy : boolean)

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

33

Model

The general model of a Coin Acceptor is:

Supports several coin denominations. The supported cash type for a particular
currency is noted by the list of cash units in the DepositCashList property.

This specification provides programmatic control only for the accepting of
cash. The removal of cash from the device (for example, to remove deposited
cash) is controlled by the adjustCashCounts method, unless the device can
determine the amount of cash on its own. The application can call
readCashCounts to retrieve the current unit count for each cash unit, but
cannot control when or how cash is removed from the device.

May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list DepositCodeList.
DepositCashList and readCashCounts all act upon the current currency
only.

Sets the cash slot (or cash bin) conditions in the FullStatus property to show
full and near full status. If there are one or more full cash slots, then
FullStatus is CACC_STATUS FULL.

Coin acceptance into the “coin acceptance mechanism” is started by invoking
the beginDeposit method. The previous values of the properties
DepositCounts and DepositAmount are initialized to zero.

The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties.

If the pauseDeposit method is executed with a parameter value of
CACC_DEPOSIT PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount propertics. When pauseDeposit
method is executed with a parameter value of CACC_DEPOSIT _RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until the endDeposit method is invoked with a
CACC_DEPOSIT _COMPLETE parameter to complete the deposit.

When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 10
332 Coin Acceptor

Coin Acceptor Sequence Diagram

NOTE: we are assuming that the :ClientApp already successfully open, Claimed and enabled the
Bill Acceptor device. This means that the Claimed, DeviceEnabled properties are == true
:ClientApp : CoinAcceptorControl CoinAcceptorSenice : DataEvent Human Actor
| setRealTimeDataEvents(tru D D D

| |
| setRealTimeDataEvents (true?) Set so DepositAmount and
| DepositCounts are updated for
M each Data Event

3: beginDeposit()

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
5: initialize DepositAmount and DepositCounts
P=—

|
|
|
|
[6: accept Cash
|
|
|
|

7: create Data Event

8: enqueue Data Event for delivery M

|

|
9: update DepositAmount and Deposit Counts

|

|
|
|
|
|
|
|
|
|
|
|
:
U 4: beginDeposit()
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

:

|

10: deliver Data Event I I

| |

| |

11: notify ClientApp of event I :
|

H ‘ !

| | [

|

I 12: fixDeposit() T : : I

| L | | !

| | [

u 13: fixDeposit I I :
| |

| | |

: 14: updateDeposjitAmount and DepositCoths :

LJ

|

1 | < 1 !

I 15: endDeposit(int32) | I :
| L e |

| | [

u 16: endDeposit(int32) : : :

| |

| |

| |

| |

| |

; T

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 333

adjustCas

Coin Acceptor State Diagram

Claimed

ClearinputProcessing

entry/ empty data queue

be'nDeposit

Coin Acceptance clearlnput

entry/ DepositAmount = 0
entry/ DepositCounts = 0

has room
for coins
e@r move coins
r full =

neal

hEou u”m“ii

Fix Mode }

fixDeposit { entry/ sync DepositAmount and DepositCounts

fix Depdsit

pauseDeposit(CACC_DEPOSIT_PAUSE)

Pause Mode
pauseDeposit(CACC_DEPOSI —P\%'rﬁri/?"s‘)hk DepositAmount and DepositCounts

Device Sharing

The Coin Acceptor is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

334

UnifiedPOS Retail Peripheral Architecture Chapter 10
Coin Acceptor

Properties (UML attributes)

CapDiscrepancy Property

Syntax

Remarks

Errors

See Also

CapDiscrepancy: boolean { read-only, access after open }
If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

readCashCounts Method.

CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Coin Acceptor can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also FullStatus Property, StatusUpdateEvent.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin acceptor can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

CapNearFullSensor Property

Syntax

Remarks

Errors

See Also

CapNearFullSensor: boolean { read-only, access after open }

If true, the Coin Acceptor can report the condition that some cash slots are nearly
full.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

FullStatus Property, StatusUpdateEvent.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 335

CapPauseDeposit Property

Syntax

Remarks

Errors

See Also

CapPauseDeposit: boolean { read-only, access after open }

If true, the Coin Acceptor has the capability to suspend cash acceptance processing
temporarily.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

pauseDeposit Method.

CapRealTimeData Property

Syntax

Remarks

Errors

See Also

CapRealTimeData: boolean { read-only, access after open }
If true, the device is able to supply data as the money is being accepted (“real time”).
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

RealTimeDataEnabled property.

CurrencyCode Property

Syntax

Remarks

Errors

See Also

CurrencyCode: string { read-write, access after open }
Contains the active currency code to be used by Coin Acceptor operations.

This property is initialized to an appropriate value by the open method. This value
is guaranteed to be one of the set of currencies specified by the DepositCodeList

property.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning
E ILLEGAL A value was specified that is not within
DepositCodeList.

DepositCodeList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

336

UnifiedPOS Retail Peripheral Architecture Chapter 10
Coin Acceptor

DepositAmount Property

Syntax

Remarks

Errors

See Also

DepositAmount: int32 { read-only, access after open }

The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Coin
Acceptor.

This property is initialized to zero by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

DepositCashList Property

Syntax

Remarks

Errors

See Also

DepositCashList: string { read-only, access after open }

Holds the cash units supported in the Coin Acceptor for the currency represented
by the CurrencyCode property.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (*;”).

Below are sample DepositCashList values in Japan.

e “1,5,10,50,100,500;” ---
1, 5,10, 50, 100, 500 yen coin.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

DepositCodeList Property

Syntax

Remarks

Errors

See Also

DepositCodeList: string { read-only, access after open }
Holds the currency code indicators for cash accepted.

Itis a list of ASCII three-character ISO 4217 currency codes separated by commas.
For example, if the string is “JPY,USD”, then the Coin Acceptor supports both
Japanese and U.S. monetary units.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 337

DepositCounts Property

Syntax

Remarks

Errors

See Also

DepositCounts: string { read-only, access after open }

Holds the total of the cash accepted by the cash units. Cash units inside the string
are the same as the DepositCashList property, and are in the same order.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Coin
Acceptor.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CurrencyCode Property.

DepositStatus Property

Syntax

Remarks

Errors

DepositStatus: int32 { read-only, access after open-claim-enable }

Holds the current status of the coin acceptance operation. It may be one of the
following values:

Value Meaning

CACC _STATUS DEPOSIT START
Cash acceptance started.

CACC_STATUS_DEPOSIT _END

Cash acceptance stopped.
CACC _STATUS DEPOSIT _COUNT

Counting or repaying the deposited money.
CACC _STATUS DEPOSIT _JAM

A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CACC_STATUS DEPOSIT _END after initialization.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

338

UnifiedPOS Retail Peripheral Architecture Chapter 10
Coin Acceptor

FullStatus Property

Syntax

Remarks

Errors

FullStatus: int32 { read-only, access after open }
Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CACC_STATUS OK All cash slots are neither nearly full nor full.
CACC_STATUS_FULL Some cash slots are full.
CACC_STATUS NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

RealTimeDataEnabled Property

Syntax

Remarks

Errors

See Also

RealTimeDataEnabled: boolean {read-write, access after open-claim-enable}

If true, each data event fired will update the DepositAmount and DepositCounts
properties. Otherwise, DepositAmount and DepositCounts are updated with the
value of the money collected when fixDeposit is called. Setting
RealTimeDataEnabled will not cause any change in system behavior until a
subsequent beginDeposit method is performed. This prevents confusion regarding
what would happen if it were modified between a beginDeposit - endDeposit pairing.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL Cannot be set true if CapRealTimeData is false.

CapRealTimeData Property, DepositAmount Property, DepositCounts
Property, beginDeposit Mecthod, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 339

Methods (UML operations)

adjustCashCounts Method

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Acceptor after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the acceptor.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

readCashCounts Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

340

UnifiedPOS Retail Peripheral Architecture Chapter 10
Coin Acceptor

beginDeposit Method

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }
Remarks Cash acceptance is started.
The following property values are initialized by the call to this method:
* The value of each cash unit of the DepositCounts property is set to zero.
* The DepositAmount property is set to zero.
After calling this method, cash acceptance is reported by DataEvents until
fixDeposit is called while the deposit process is not paused.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL The call sequence is not correct.
See Also DepositAmount Property, DepositCounts Property, endDeposit Method,
fixDeposit Method, pauseDeposit Method.
endDeposit Method
Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }
The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:
Parameter Description
CACC _DEPOSIT COMPLETE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.
Remarks Cash acceptance is completed.
Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.
The application must call the fixDeposit method before calling this method.
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E ILLEGAL One of the following errors occurred:

e The call sequence is invalid. beginDeposit and
fixDeposit must be called in sequence before
calling this method.

See Also DepositAmount Property, DepositCounts Property, beginDeposit Method,

fixDeposit Method, pauseDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 341

fixDeposit Method

Syntax

Remarks

Errors

See Also

fixDeposit ():
void { raises-exception, use after open-claim-enable }

When this method is called, all property values are updated to reflect the current
values in the Coin Acceptor.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL One of the following errors occurred:
* The call sequence is invalid. beginDeposit must be
called before calling this method.
DepositAmount Property, DepositCounts Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

pauseDeposit Method

Syntax

Remarks

Errors

See Also

pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CACC_DEPOSIT PAUSE Cash acceptance is paused.
CACC _DEPOSIT RESTART Cash acceptance is resumed.

Called to suspend or resume the process of depositing cash.

If control is CACC_DEPOSIT PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CACC_DEPOSIT _RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the DepositCounts and DepositAmount
properties are updated to reflect the current state of the Coin Acceptor. The
property values are not changed again until the deposit process is resumed.

If control is CACC_DEPOSIT RESTART, the deposit process is resumed.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E ILLEGAL One of the following errors occurred:

* The call sequence is invalid. beginDeposit must be
called before calling this method.

* The deposit process is already paused and control is
set to CACC_DEPOSIT PAUSE, or the deposit
process is not paused and control is set to
CACC _DEPOSIT RESTART.

CapPauseDeposit Property, DepositAmount Property, DepositCounts Property,
beginDeposit Method, endDeposit Method, fixDeposit Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 10
342 Coin Acceptor

readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks Each unit in cashCounts matches a unit in the DepositCashList property, and is
in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Coin Acceptor.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Coin Acceptor. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Coin Acceptor. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

See Also DepositCashList Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 343

Events (UML interfaces)

DataEvent

<< event >>

Description

Attributes

DirectlOEvent

<< event >>

Description

Attributes

Remarks

See Also

upos::events::DataEvent
Status: int32 { read-only }

Notifies the application when a one or more coins have been accepted.
This event contains the following attribute:

Attributes Type Description
Status int32 The Status parameter contains zero.

upos::events::DirectlOEvent
EventNumber: in#32 { read-only }
Data: int32 {read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Coin Acceptor Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.
Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Acceptor devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 10
344 Coin Acceptor

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the Coin Acceptor
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
The Status parameter contains the Coin Acceptor status condition:

Value Meaning

CACC_STATUS _FULL Some cash slots are full.

CACC _STATUS NEARFULL Some cash slots are nearly full.

CACC _STATUS _FULLOK No cash slots are either full or nearly full.
CACC _STATUS JAM A mechanical fault has occurred.

CACC _STATUS_JAMOK A mechanical fault has recovered.

Remarks Fired when the Coin Acceptor detects a status change.

For changes in the fullness levels, the Coin Acceptor is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full or
near full states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs.

See Also “Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 11

Coin Dispenser

This Chapter defines the Coin Dispenser device category.

Summary
Properties (UML attributes)
Common Type Mutability Version May Use After
AutoDisable: boolean { read-write } 1.2 Not Supported
CapCompareFirmwareVersion: boolean { read-only } 1.9 open
CapPowerReporting: int32 { read-only } 1.3 open
CapStatisticsReporting: boolean { read-only } 1.8 open
CapUpdateFirmware: boolean { read-only } 1.9 open
CapUpdateStatistics: boolean { read-only } 1.8 open
CheckHealthText: string { read-only } 1.0 open
Claimed: boolean { read-only } 1.0 open
DataCount: int32 { read-only } 1.2 Not Supported
DataEventEnabled: boolean { read-write } 1.0 Not Supported
DeviceEnabled: boolean { read-write } 1.0 open & claim
FreezeEvents: boolean { read-write } 1.0 open
OutputID: int32 { read-only } 1.0 Not Supported
PowerNotify: int32 { read-write } 1.3 open
PowerState: int32 { read-only } 1.3 open
State: int32 { read-only } 1.0 --
DeviceControlDescription: string { read-only } 1.0 --
DeviceControlVersion: int32 { read-only } 1.0 --
DeviceServiceDescription: string { read-only } 1.0 open
DeviceServiceVersion: int32 { read-only } 1.0 open
PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

346

UnifiedPOS Retail Peripheral Architecture

Chapter 11
Coin Dispenser

Properties (Continued)

Specific
CapEmptySensor:
CapJamSensor:
CapNearEmptySensor:

DispenserStatus:

Type
boolean
boolean
boolean
int32

Methods (UML. operations)

Mutability
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version May Use After
1.0 open
1.0 open
1.0 open
1.0 open, claim, & enable

Common
Name Version
open (logicalDeviceName: string): 1.0
void { raises-exception }
close (): 1.0
void { raises-exception, use after open }
claim (timeout: int32): 1.0
void { raises-exception, use after open }
release (): 1.0
void { raises-exception, use after open, claim }
checkHealth (level: int32): 1.0
void { raises-exception, use after open, claim, enable }
clearInput (): Not
void {} supported
clearInputProperties (): Not
void { } supported
clearOutput (): Not
void { } supported
directlO (command: int32, inout data: inz32, inout obj: object): 1.0
void { raises-exception, use after open }
compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.9
void { raises-exception, use after open, claim, enable }
resetStatistics (statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
retrieveStatistics (inout statisticsBuffer: string): 1.8
void { raises-exception, use after open, claim, enable }
updateFirmware (firmwareFileName: string): 1.9
void { raises-exception, use after open, claim, enable }
updateStatistics (statisticsBuffer: string): 1.8

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

347

Methods (UML operations) - continued

Specific
Name
adjustCashCounts (cashCounts: string): 1.11
void { raises-exception, use after open, claim, enable }
dispenseChange (amount: int32): 1.0
void { raises-exception, use after open, claim, enable }
readCashCounts (inout cashCounts: string, inout discrepancy: boolean): 1.11
void { raises-exception, use after open, claim, enable }
Events (UML interfaces)
Name Type Mutability Version
upos::events::DataEvent Not Supported
upos::events::DirectlOEvent 1.0

EventNumber: int32 { read-only }

Data: int32 { read-write }

Obj: object { read-write }
upos::events::ErrorEvent Not Supported
upos::events::OQutputCompleteEvent Not Supported
upos::events::StatusUpdateEvent

Status: int32 { read-only } 1.0

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 11
348 Coin Dispenser

General Information

The Coin Dispenser programmatic name is “CoinDispenser”.

Capabilities Updated in Release 1.11

The coin dispenser has the following capability:

* Supports a method that allows a specified amount of change to be dispensed
from the device.

The coin dispenser may have the following additional capabilities:
* Status reporting, which indicates empty coin slot conditions, near empty coin
slot conditions, and coin slot jamming conditions.

* Starting with Release 1.11, reporting of a possible (or probable) cash count
discrepancy in the data reported by the readCashCounts method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

349

Coin Dispenser Class Diagram Updated in Release 1.11

The following diagram shows the relationships between the Coin Dispenser

classes.

<<Interface>>
BaseControl
(fromupos)
[¥open()
[®close()
®claim()
[®compareFimwareVersion() <<utility>>
=:1Z?ssetgtist'cso [~~~ *«*us*e?f - Ypaseten
I
_— (from upos)
<<exception>> Sceends? - - Chockiledh()
UposException &~~~ ~ [Sclearhput())
from upos) [®iclearhputProperties()
[®clearOutput ()
[®directlO()
NN [®retriewveStatistics()
~ "
p R ooeCtetenmat <<utity>>
AN P CoinDispenserConst
> N (fom upos)
S -
<<sends>> . ! =
~ | <<uses>>
N l 7
|
<<ewent>> <<|nterface>>
DirectlOEvent CoinDispenserControl
(from events) i from upos)
[igl<<prop>> EventNumber : int32 res [&<<capability>> CapEmptySensor : boolean
[Gi<<prop>> Data : int32 S #3<<capability>> CapJam Sensor : boolean
[<<prop>> Obj : object i<<capability>> CapNearEmptySensor : boolean
B <<capability>> DispenserStatus : int32
®adjustCashCounts(cashCounts : string) : void
fires [Wdispens eChange(amount : int32) : void
[®readCashCounts(cashCounts : string, discrepancy : boolean) : void
<<ewent>>
StatusUpdateEvent

(from events)

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 11
350 Coin Dispenser

Coin Dispenser Sequence Diagram Added in Release 1.7

The following sequence diagram shows the typical usage of the Coin Dispenser
device, showing coin dispensing and the firing of a StatusUpdateEvent due to
coin status getting low.

NOTE: we are assuming that the :ClientApp already successfully registered handlers for events and opened, claimed
and enabled the CoinDispenser device. This means that the Claimed, DeviceEnabled properties are == true

‘ :ClientApp ‘ ‘ :CoinDispenser

| | |

1: dispenseChange(amoﬂ{nﬂ)
>

‘ :StatusUpdateE vent

‘ :CoinDispenserSenice

2: dispense#hange(amounﬂ)

7

3: dispenseChange(amquntZ)

L‘J\Assume that after this

point the CoinDispenser
‘ change is getting low

i
4: dispensecihange(amountz)

5: update %ispenserStatus to COIN_STAﬂJS_NEAR_EMPW [CapNearEmptyStatus == true]

At this point the ‘ :
:ClientApp event 6: create new SUE event
handling code executes ‘ E]
and takes appropriate
action (like informing
user) ‘ 7: deliver SU% ewent to control

I \ 1

L L 8: deliver StatusUpdateE#ent to all registered handlers

: notify cI|eN\t of new event
T | | y

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 351

Coin Dispenser State Diagram Updated in Release 1.11

The following diagram illustrates the various state transitions within the Coin
Dispenser device category.

release
setDeviceEnabled

Enabled

readCashC@

UnifiedPOS Version 1.11 -- Released January 15, 2007

352

UnifiedPOS Retail Peripheral Architecture Chapter 11

Coin Dispenser

Model Updated in Release 1.11

The general model of a coin dispenser is:

Consists of a number of coin slots which hold the coinage to be dispensed. The
application using the Coin Dispenser Service is not concerned with
controlling the individual slots of coinage, but rather calls a method with the
amount of change to be dispensed. It is the responsibility of the coin dispenser
device or the Service to dispense the proper amount of change from the
various slots.

Starting with Release 1.11:

Sets cash in the device programatically by adding amount to counts when cash
is added.

Reads cash counts from device, either directly from the hardware, or from the
service, by tracking what is dispensed and what has been added to the device.

Device Sharing

The coin dispenser is an exclusive-use device, as follows:

The application must claim the device before enabling it.

The application must claim and enable the device before accessing some of the
properties, dispensing change, or receiving status update events.

See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML attributes) 353

Properties (UML attributes)
CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report an out-of-coinage condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report a mechanical jam or failure condition.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further

information, see “Errors” on page 40.

CapNearEmptySensor Property

Syntax

Remarks

Errors

CapNearEmptySensor: boolean { read-only, access after open }
If true, the coin dispenser can report when it is almost out of coinage.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

DispenserStatus Property

Syntax

Remarks

Errors

DispenserStatus: int32 { read-only, access after open-claim-enable }
Holds the current status of the dispenser. It has one of the following values:

Value Meaning

COIN_STATUS _OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is synonymous to the DeviceStatus in the Cash Changer.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

354

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Dispenser

Methods (UML operations)

adjustCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

See Also

adjustCashCounts (cashCounts: string);
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cashCounts parameter contains cash types and
amounts to be initialized.

This method is called to set the initial amounts in the Coin Dispenser after initial
setup, or to adjust cash counts after replenishment or removal, such as a paid in or
paid out operation. This method is called when needed for devices which cannot
determine the exact amount of cash in them automatically. If the device can
determine the exact amount, then this method call is ignored. The application
would first call readCashCounts to get the current counts, and adjust them to the
amount being replenished. Then the application will call this method to set the
amount currently in the dispenser.

To reset all cash counts to zero, set each denomination amount to zero.

For example if the currency is Japanese yen and the cashCounts parameter is set
to .1:80,5:77,50:54,100:0,500:87. as a result of calling the adjustCashCounts
method, then there would be eighty one yen coins, seventy-seven five yen coins,
fifty-four fifty yen coins, zero one hundred yen coins, and eighty-seven five-
hundred yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

readCashCounts Method.

dispenseChange Method

Syntax

Remarks

Errors

dispenseChange (amount: in#32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Dispenses change. The value represented by the amount parameter is a count of
the currency units to dispense (such as cents or yen).

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E ILLEGAL An amount parameter value of zero was specified, or the
amount parameter contained a negative value or a value
greater than the device can dispense.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Methods (UML operations) 355

readCashCounts Method Added in Release 1.11

Syntax

Remarks

Errors

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description
cashCounts The cash count data is placed into the string cashCounts.
discrepancy If discrepancy is set to true by this method, then there is

some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

The format of the string cashCounts is an ASCII string. The string has a set of
comma separated units. Each unit in cash Counts indicates a denomination of a unit
as well as a count of those units, separated by a colon (“:”).

For example if the currency is Japanese yen and string returned in cashCounts is
set to:
1:80,5:77,10:0,50:54,100:0

as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, and 54 fifty yen coins in the Coin Dispenser.

A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

356

UnifiedPOS Retail Peripheral Architecture Chapter 11
Coin Dispenser

Events (UML interfaces)

DirectlOEvent

<<event >> upos::events::DirectlOEvent

Description

Attributes

Remarks

See Also

EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object {read-write }

Provides Service information directly to the application. This event provides a
means for a vendor-specific Coin Dispenser Service to provide events to the
application that are not otherwise supported by the Control.

This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the

EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Dispenser devices which may not have
any knowledge of the Service’s need for this event.

“Events” on page 39, directlO Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Events (UML interfaces) 357

StatusUpdateEvent

<<event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.
Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The status reported from the Coin Dispenser.
The Status attribute has one of the following values:

Value Meaning

COIN_STATUS OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS JAM A mechanical fault has occurred.
Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.

The Update Firmware capability, added in Release 1.9,
added additional Status values for communicating the
status/progress of an asynchronous update firmware
process.

See “StatusUpdateEvent” description on page 96.
Remarks This event applies for status changes of the sensor types supported, as indicated by
the capability properties. It also applies if Power State Reporting is enabled.

See Also “Events” on page 39.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 11
358 Coin Dispenser

UnifiedPOS Version 1.11 -- Released January 15, 2007

CHAPTER 12

Electronic Journal

Summary

This Chapter defines the Electronic Journal device category.

Properties (UML attributes)

Common

AutoDisable:

CapCompareFirmwareVersion:

CapPowerReporting:
CapStatisticsReporting:
CapUpdateFirmware:
CapUpdateStatistics:
CheckHealthText:
Claimed:

DataCount:
DataEventEnabled:
DeviceEnabled:
FreezeEvents:
OutputID:
PowerNotify:
PowerState:

State:

DeviceControlDescription:

DeviceControlVersion:
DeviceServiceDescription:

DeviceServiceVersion:

PhysicalDeviceDescription:

PhysicalDeviceName:

Type
boolean
boolean
int32
boolean
boolean
boolean
string
boolean
int32
boolean
boolean
boolean
int32
int32
int32
int32

string
int32
string
int32
string

string

Mutability
{ read-write }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-write }
{ read-write }
{ read-write }
{ read-only }
{ read-write }
{ read-only }
{ read-only }

{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }
{ read-only }

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open

open & claim
open
open
open

open

360

UnifiedPOS Retail Peripheral Architecture

Chapter 12
Electronic Journal

Properties (Continued)

Specific:

AsyncMode:
CapAddMarker:
CapErasableMedium:
CaplhnitializeMedium:
CapMediumlIsAvailable:
CapPrintContent:
CapPrintContentFile:
CapRetrieveCurrentMarker:

CapRetrieveMarker:

CapRetrieveMarkerByDateTime:

CapRetrieveMarkersDateTime:
CapStation:
CapStorageEnabled:
CapSuspendPrintContent:
CapSuspendQueryContent:
CapWaterMark:
FlagWhenldle:
MediumFreeSpace:
MediumID:
MediumlIsAvailable:
MediumSize:

Station:

StorageEnabled:
Suspended:

WaterMark:

Type
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
int32
boolean
boolean
boolean
boolean
boolean
currency
string
boolean
currency
int32
boolean
boolean

boolean

Mutability
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-only}
{read-only}
{read-only}
{read-only}
{read-write}
{read-write}
{read-only}

{read-write}

Version
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10

May Use After
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open, claim & enable
open, claim & enable
open, claim & enable
open, claim & enable
open
open, claim & enable
open

open

UnifiedPOS Version 1.11 -- Released January 15, 2007

Summary 361

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string): 1.10
void { raises-exception }

close (): 1.10
void { raises-exception, use after open }

claim (timeout: int32): 1.10
void { raises-exception, use after open }

release (): 1.10
void { raises-exception, use after open, claim }

checkHealth (level: int32): 1.10
void { raises-exception, use after open, claim, enable }

clearInput (): 1.10
void { raises-exception, use after open, claim }

clearInputProperties (): Not
void { } supported

clearOutput (): 1.10
void { raises-exception, use after open, claim }

directlO (command: int32, inout data: inz32, inout obj: object): 1.10
void { raises-exception, use after open }

compareFirmwareVersion (firmwareFileName: string, out result: int32): 1.10
void { raises-exception, use after open, claim, enable }

resetStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveStatistics (inout statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

updateFirmware (firmwareFileName: string): 1.10
void { raises-exception, use after open, claim, enable }

updateStatistics (statisticsBuffer: string): 1.10
void { raises-exception, use after open, claim, enable }

Specific

Name

addMarker (marker: string): 1.10
void { raises-exception, use after open, claim, enable }

cancelPrintContent (): 1.10
void { raises-exception, use after open, claim, enable }

cancelQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

eraseMedium (): 1.10
void { raises-exception, use after open, claim, enable }

initializeMedium (mediumlID: string): 1.10
void { raises-exception, use after open, claim, enable }

printContent (fromMarker: string, toMarker: string): 1.10

void { raises-exception, use after open, claim, enable }

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 12
362 Electronic Journal

printContentFile (fileName: string): 1.10
void { raises-exception, use after open, claim, enable }

queryContent (fileName: string, fromMarker: string, toMarker: string): 1.10
void { raises-exception, use after open, claim, enable }

resumePrintContent (): 1.10
void { raises-exception, use after open, claim, enable }

resumeQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

retrieveCurrentMarker (markerType: inf32, out marker: string): 1.10
void { raises-exception, use after open, claim, enable }

retrieveMarker (markerType: int32, sessionNumber: int32, document- 1.10
Number: int32, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkerByDateTime (markerType: int32, dateTime: string, mark- 1.10
erNumber: string, out marker: string):
void { raises-exception, use after open, claim, enable }

retrieveMarkersDateTime (marker: string, out dateTime: string): 1.10
void { raises-exception, use after open, claim, enable }
suspendPrintContent (): 1.10

void { raises-exception, use after open, claim, enable }

suspendQueryContent (): 1.10
void { raises-exception, use after open, claim, enable }

Events (UML interfaces)

Name Type Mutability Version
upos::events::DataEvent 1.10
Status: int32 { read-only }
upos::events::DirectlOEvent 1.10
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }
upos::events::ErrorEvent 1.10
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }
upos::events::OQutputCompleteEvent 1.10
OutputID: int32 { read-only }
upos::events::StatusUpdateEvent 1.10
Status: int32 { read-only }

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 363

General Information

The Electronic Journal programmatic name is “ElectronicJournal”.
This device was introduced in Version 1.10 of this specification.

Capabilities

The Electronic Journal device stores records of transactions into digital media as
electronic data. If the recording function of the Electronic Journal device is
enabled, then it starts storing all print data that is output to the POSPrinter or
FiscalPrinter device. In the case of the FiscalPrinter device, the Fiscal Printing
output is stored at all times.

The Electronic Journal has the following capabilities.

 Stores transaction data.
 Transfers stored data.

The Electronic Journal may also have the following additional capabilities.
* Prints stored data on the attached POSPrinter or FiscalPrinter.
* Erases stored data.
* Initializes recording medium.

The Electronic Journal may also have the following special capabilities in fiscal
environments.

* Provides the ability to re-print entire fiscal documents and tickets specifying
a range of ticket numbers or ticket dates and times.

UnifiedPOS Version 1.11 -- Released January 15, 2007

364

UnifiedPOS Retail Peripheral Architecture

Chapter 12
Electronic Journal

Electronic Journal Class Diagram

The following diagram shows the relationships between the Electronic Journal
device classes.

Upos!|
(fro

<<exception>>

Exception
m upos)

<<sends§\

<<event>>
DataEvent
(from events)

< —

<<utility>>

<<Interface>> <<utility>>
BaseControl LprosConst ElectronicJournalConst
(from upos) (from upos) (from upos)
<<sends>> <<uses>>

K

\

7
<<uses>>/

<2<<prop>> Status : int32

<<Interface>>
ElectronicJournalControl
(from upos)

fires

<<event>>
ErrorEvent
(from events)

&<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32

w<<prop>> ErrorLocus : int32 fires
&<<prop>> ErrorResponse : int32 <
<<event>>
OutputCompleteEvent fires
(from events) < |

“<<prop>> OutputD : int32

@<<prop>> AsyncMode : boolean

@<<capability>> CaplnitializeMedium : boolean
<z<<capability>> CapErasableMedium : boolean
wi<<capability>> CapPrintContent : boolean
2<<capability>> CapPrintContentFile : boolean
w<<capability>> CapStation : int32

@<<capability>> CapSuspendPrintContent : boolean
@<<capability>> CapSuspendQueryContent : boolean
sz<<capability>> CapWaterMark : boolean
wi<<capability>> CapMediumlsAvailable : boolean
2<<capability>> CapRetrieveMarker : boolean
<<<capability>> CapRetrieveMarkerByDateTime : boolean
w<<capability>> CapRetrieveCurrentMarker : boolean
@<<capability>> CapRetrieveMarkersDateTime : boolean
z<<capability>> CapAddMarker : boolean
<z<<capability>> CapStorageEnabled : boolean
2<<prop>> FlagWhenldle : boolean

@<<prop>> MediumID : string

@<<prop>> MediumSize : currency

@<<prop>> MediumFreeSpace : currency

w<<prop>> MediumisAvailable : boolean

s2<<prop>> StorageEnabled : boolean

2<<prop>> Station : int32

<@<<prop>> Suspended : boolean

@<<prop>> WaterMark : boolean

<<event>>
StatusUpdateEvent
(from events)

<i<<prop>> Status : int32

®addMarker(marker : string) : void

ScancelPrintContent () : void

®cancelQueryContent () : void

FinitializeMedium (mediumID : string) : void

SeraseMedium () : void

FprintContent (fromMarker : string, toMarker : string) : void

SprintContentFile (fileName : string) : void

SqueryContent (fileName : string, fromMarker : string, toMarker : string) : void

FresumePrintContent () : void

FresumeQueryContent () : void

#suspendPrintContent () : void

®suspendQueryContent () : void

SretrieveMarker(markerType : int32, sessionNumber : int32, documentNumber : int32, out marker : string) : void
SretrieveMarkerByDate Time(markerType : int32, dateTime : string, markerNumber : string, out marker : string) : void
FretrieveCurrentMarker(markerType : int32, out marker : string) : void

FretrieveMarkersDate Time(marker : string, out dateTime : string) : void

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

365

Model

The Electronic Journal writing process is started implicitly when a printing
method for the POSPrinter or FiscalPrinter is performed. All output is performed
on a first-in first-out basis. Therefore, an ErrorEvent is delivered if the writing
process fails.

The writing process of the POSPrinter or FiscalPrinter may result in a failure, in
this case an ErrorEvent is delivered.

* The following methods are always performed synchronously: addMarker,
retrieveCurrentMarker, retrieveMarker, retrieveMarkerByDateTime,
retrieveMarkersDateTime, and checkHealth. These methods will fail if
output to the POSPrinter or FiscalPrinter is outstanding.

* The suspendPrintContent and suspendQueryContent methods are also
always performed synchronously.

These methods attempt to stop printing (that is, at the very next printer
operation). They may be called when asynchronous output is outstanding.
These methods are primarily intended for use in exception conditions when
asynchronous output is outstanding.

* The following methods are performed either synchronously or asynchronously,
depending on the value of the AsyncMode property: eraseMedium,
initializeMedium, printContent, printContentFile, and queryContent.
When AsyncMode is false, then these methods are performed synchronously.

A marker can be placed where to store data and it can be used as an index. It can
be added at the beginning and end of data to indicate the data range when getting
or printing stored data.

During asynchronous data printing or transfer process, it can be suspended by
interrupt methods.

In fiscal environments the markers are set implicitly by the FiscalPrinter device.
The stored data is organized in sessions that correspond to the fiscal days. These
sessions contain documents that correspond to fiscal tickets. Sessions and
documents can be queried by the application indirectly using the
retrieveMarker, retrieveMarkerByDateTime, and retrieveCurrentMarker
methods. The returned markers are intended to be used with the printContent
and queryContent methods. The content and format of the markers are
implementation specific and need not be known or analyzed by the application.

An Electronic Journal device combines both the properties of an input device
(query) and an output device (store and print).

The data stored on the electronic journal medium are the printing lines that have
been issued to the attached POSPrinter or FiscalPrinter device. The data format of
the stored information depends upon the physical device model. The data should
be stored in nonvolatile storage; e.g., flash cards, memory cards, CD-RW, and
HDD can be used as the physical media. There is no need to distinguish the
differences between the physical media.

UnifiedPOS Version 1.11 -- Released January 15, 2007

366

UnifiedPOS Retail Peripheral Architecture Chapter 12
Electronic Journal

If the recording medium can be removed from or inserted into the device, a
StatusUpdateEvent is delivered when the medium status is changed.
Additionally, the medium status can be checked and it can be initialized if
necessary.

The primary responsibility is storing transaction data as it is, so there are no
functions to convert or reprocess the data.

Device Sharing

The Electronic Journal is an exclusive-use device, as follows:

* The application must claim the device before enabling it.

* The application must claim and enable the device before accessing many of
the Electronic Journal specific properties.

* The application must claim and enable the device before calling methods that
manipulate the device.

* See the “Summary” table for precise usage prerequisites.

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information

367

Electronic Journal Sequence Diagrams

Various sequence diagrams are used to illustrate how the Electronic Journal API
can be used. These scenarios are designed to show the rationale and key concepts
behind the structure of the API.

: Application

: ElectronicJournalControl

: POSPrinterControl

open()

claim()

]

T setDeviceEnabled(true)

—

setDataEventEnabled(true) /I—ﬁ

setStorageEnabled(true) ‘

I

addMarker(1) ‘

printNormal(PTR S#RECEIPT, "Receipt #1")

addMarker(2)

write data

\
u‘
|
|

printNormal(PTR SJRECEIPT "Receipt #2")

1

T queryContent("data.bin", 1, 2)

write data

|
|

notify of DataEvent

ﬁ

— |

close()

—

|
i

J
J

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 12
368 Electronic Journal

The following sequence diagram shows how markers are intended to be used in
the fiscal environment. The querying of the FiscalPrinter device for the needed
markers is processed implicitly and therefore not shown below.

: Application : ElectronicJournalConst

retrieveMarker(EJ_MT_SESSION_BEG, 1, 0, marker1)

maker1

retrieveMarker(EJ_MT_SESSION_END, 1, 0, marker2)

marker2

printContent(marker1, marker2)

queryContent("data.bin", marker1, marker2)

I
— — -

UnifiedPOS Version 1.11 -- Released January 15, 2007

General Information 369

Electronic Journal State Diagram

The following diagram illustrates the various state transitions within the
Electronic Journal device.

printContent(), printContentFile(), queryContent()

\ﬂ

N IMod |
ormaiiode suspendPrintContent()L SuspendMode

suspendQueryContent()

resumePrintContént(), cancelPrintContenty(),
resumeQueryContent(), cancelQueryContent()

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 12
370 Electronic Journal

Properties (UML Attributes)

AsyncMode Property
Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods will be performed asynchronously.
If false, they will be performed synchronously.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapAddMarker Property

Syntax CapAddMarker: boolean {read-only, access after open}

Remarks If true, the application can use the addMarker method. Usually this property is
false for fiscal EJ devices.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also addMarker Method.

CapErasableMedium Property
Syntax CapErasableMedium: boolean {read-only, access after open}

Remarks If true, the storage medium can be erased. If false, it is impossible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CaplnitializeMedium Property

Syntax CaplnitializeMedium: boolean { read-only, access after open }

Remarks If true, the application can initialize the medium.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapMediumisAvailable Property Updated in Release 1.11

Syntax CapMediumlIsAvailable: boolean { read-only, access after open }

Remarks If true, the application can check whether a recording medium is available or not.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also MediumlIsAvailable Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 37

CapPrintContent Property Updated in Release 1.11
Syntax CapPrintContent: boolean { read-only, access after open }
Remarks If true, the device is able to reprint stored journal documents directly on a
connected printing device.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
See Also printContent Method.
CapPrintContentFile Property Updated in Release 1.11
Syntax CapPrintContentFile: boolean { read-only, access after open }
Remarks If true, the device is able to print journal documents extracted from the storage
medium on a connected printing device.
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
See Also printContentFile Method.

CapRetrieveCurrentMarker Property

Syntax

Remarks

Errors

See Also

CapRetrieveCurrentMarker: boolean {read-only, access after open}

If true, the application can use the retrieveCurrentMarker method. Usually this
property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrieveCurrentMarker Method.

CapRetrieveMarker Property

Syntax

Remarks

Errors

See Also

CapRetrieveMarker: boolean {read-only, access after open}

If true, the application can use the retrieveMarker method. Usually this property
is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrieveMarker Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

372

UnifiedPOS Retail Peripheral Architecture Chapter 12
Electronic Journal

CapRetrieveMarkerByDateTime Property

Syntax
Remarks

Errors

See Also

CapRetrieveMarkerByDateTime: hoolean {read-only, access after open}

If true, the application can use the retrieveMarkerByDateTime method. Usually
this property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrieveMarkerByDateTime Method.

CapRetrieveMarkersDateTime Property

Syntax

Remarks

Errors

See Also

CapRetrieveMarkersDateTime: boolean {read-only, access after open}

If true, the application can use the retrieveMarkersDateTime method. Usually
this property is true for fiscal EJ devices.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

retrieveMarkersDateTime Method.

CapStation Property

Syntax

Remarks

Errors

CapStation: in#32 { read-only, access after open }

This capability indicates the availability of data capturing.

CapStation property is a logical OR combination of any of the following values:

Value Meaning

EJ S RECEIPT Captures data output into receipt station and stores it
into the medium.

EJ S SLIP Captures data output into slip station and stores it into
the medium.

EJ S JOURNAL Captures data output into journal station and stores it

into the medium.
This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapStorageEnabled Property

Syntax

Remarks

Errors

See Also

CapStorageEnabled: boolean { read-only, access after open }

This property indicates whether the recording of print data can be controlled by the
StorageEnabled property, i.e., can be changed. If false, StorageEnabled is
always set to true.

This property is initialized by the open method.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

StorageEnabled Property.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 373

CapSuspendPrintContent Property

Syntax

Remarks

Errors

See Also

CapSuspendPrintContent: hoolean { read-only, access after open }

If true, the printing process can be suspended.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Suspended Property.

CapSuspendQueryContent Property

Syntax

Remarks

Errors

See Also

CapSuspendQueryContent: boolean { read-only, access after open }

If true, the data acquiring process can be suspended.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Suspended Property.

CapWaterMark Property

Syntax

Remarks

Errors

CapWaterMark: boolean { read-only, access after open }

If true, the device is able to print specific predefined background when reprinting
journal documents.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

FlagWhenlidle Property

Syntax

Remarks

Errors

See Also

FlagWhenldle: boolean { read-write, access after open }

If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.
This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the
application control when all outstanding asynchronous outputs have been
processed. The event will be enqueued if the outputs were completed successfully
or if they were cleared by the clearOutput method or by an ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a

StatusUpdateEvent is enqueued immediately. The application can therefore
depend upon the event, with no race condition between the starting of its last
asynchronous output and the setting of this flag.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

State Property, clearOutput Method.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 12
374 Electronic Journal

MediumFreeSpace Property
Syntax MediumFreeSpace: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the remained free space on the storage medium in bytes. After
each storing process caused by printing with POSPrinter or FiscalPrinter device,
this value is decreased. It notifies StatusUpdateEvent when free space is near
empty or empty.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

MediumiD Property

Syntax MediumlID: string { read-only, access after open-claim-enable }
Remarks This property indicates identification of the currently plugged medium. It holds a
value from the physical medium, so is initialized when enabled.

If it is not possible to obtain any information from the physical medium, then this
property is initialized to null string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

MediumisAvailable Property Updated in Release 1.11

Syntax MediumlIsAvailable: boolean { read-only, access after open-claim-enable }
Remarks Indicates whether a recording medium is attached or not. This information is only
available if CapMediumlIsAvailable is true.
If true, a recording medium is attached. If false, it is not attached.
If the storage medium is not exchangeable, this property is always set true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

See Also CapMediumlIsAvailable Property.
MediumSize Property
Syntax MediumsSize: currency { read-only, access after open-claim-enable }

Remarks Holds the size of the storage medium in bytes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

Station Property
Syntax Station: int32 { read-write, access after open }

Remarks Set the station for subsequent data storing into the medium. Station is a logical OR
combination of any of the following values.
Value Meaning

EJ S RECEIPT Captures data output into receipt station of POSPrinter
or FiscalPrinter and stores it into the medium.

UnifiedPOS Version 1.11 -- Released January 15, 2007

Properties (UML Attributes) 375

EJ S SLIP Captures data output into slip station of POSPrinter or
FiscalPrinter and stores it into the medium.
EJ S JOURNAL Captures data output into journal station of POSPrinter

or FiscalPrinter and stores it into the medium.
This property is initialized to EJ S RECEIPT by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.
StorageEnabled Property Updated in Release 1.11
Syntax StorageEnabled: boolean { read-write, access after open-claim-enable }
Remarks If true, the device is in a recordable state. Data output to the POSPrinter or
FiscalPrinter is stored on the medium as electronic information sequentially. The
Station property must be specified in advance to specify what station is available
to record.
If false, the device has been disabled to record data.
This property is initialized to false by the open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 40.
Some possible values of the exception’s ErrorCode property are:
Value Meaning
E FAILURE The device cannot move to the recordable state.

See Also Station Property.

Suspended Property

Syntax
Remarks

Errors

See Also

Suspended: boolean { read-only, access after open }
If true, the printing or data acquiring process is being suspended.

When both CapSuspendPrintContent and CapSuspendQueryContent are
false, there is no application to suspend a process. Then this property is always set
to false.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

CapSuspendPrintContent Property, CapSuspendQueryContent Property.

WaterMark Property

Syntax
Remarks

Errors

WaterMark: boolean { read-write, access after open }

This property specifies whether a specific predefined background should be
printed or not with journal documents. If true, the background is printed and it is
clear that the output is a reprint of the stored data.

A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 40.

UnifiedPOS Version 1.11 -- Released January 15, 2007

UnifiedPOS Retail Peripheral Architecture Chapter 12
376 Electronic Journal

Methods (UML operations)
addMarker Method

Syntax addMarker (marker: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

marker Marker identifier.
Remarks Adds a marker at the end of the data stored on the recording medium.

Specifies